Scott Eisele, Purboday Ghosh, Keegan Campanelli, A. Dubey, G. Karsai
{"title":"Demo: Transactive Energy Application with RIAPS","authors":"Scott Eisele, Purboday Ghosh, Keegan Campanelli, A. Dubey, G. Karsai","doi":"10.1109/ISORC.2019.00024","DOIUrl":null,"url":null,"abstract":"The modern electric grid is a complex, decentralized cyber-physical system requiring higher-level control techniques to balance the demand and supply of energy to optimize the overall energy usage. The concept of Transactive Energy utilizes distributed system principle to address this challenge. In this demonstration we show the usage of the distributed application management platform RIAPS in the implementation of one such Transactive Energy approach to control elements of a power system, which runs as a a simulation using the Gridlab-d simulation solver.","PeriodicalId":425290,"journal":{"name":"2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISORC.2019.00024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The modern electric grid is a complex, decentralized cyber-physical system requiring higher-level control techniques to balance the demand and supply of energy to optimize the overall energy usage. The concept of Transactive Energy utilizes distributed system principle to address this challenge. In this demonstration we show the usage of the distributed application management platform RIAPS in the implementation of one such Transactive Energy approach to control elements of a power system, which runs as a a simulation using the Gridlab-d simulation solver.