{"title":"Interactive multimodal path planning in immersion","authors":"Simon Cailhol, P. Fillatreau, J. Fourquet","doi":"10.1109/ECMSM.2013.6648954","DOIUrl":null,"url":null,"abstract":"Recent studies have defined interactive path planners for simulations involving a human operator. Such path planners enable a human operator to share control with an automatic planner and are based on Robotics and Virtual Reality (VR) methods. This paper proposes a novel architecture for this interactive planner. It enhances interaction with the user by adding topological and semantic representations to the purely gcometric model traditionally used.","PeriodicalId":174767,"journal":{"name":"2013 IEEE 11th International Workshop of Electronics, Control, Measurement, Signals and their application to Mechatronics","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 11th International Workshop of Electronics, Control, Measurement, Signals and their application to Mechatronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECMSM.2013.6648954","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Recent studies have defined interactive path planners for simulations involving a human operator. Such path planners enable a human operator to share control with an automatic planner and are based on Robotics and Virtual Reality (VR) methods. This paper proposes a novel architecture for this interactive planner. It enhances interaction with the user by adding topological and semantic representations to the purely gcometric model traditionally used.