High-performance MoS2 field-effect transistors enabled by chloride doping: Record low contact resistance (0.5 kΩ·µm) and record high drain current (460 µA/µm)

Lingming Yang, K. Majumdar, Yuchen Du, Han Liu, Heng Wu, M. Hatzistergos, P. Hung, R. Tieckelmann, W. Tsai, C. Hobbs, P. Ye
{"title":"High-performance MoS2 field-effect transistors enabled by chloride doping: Record low contact resistance (0.5 kΩ·µm) and record high drain current (460 µA/µm)","authors":"Lingming Yang, K. Majumdar, Yuchen Du, Han Liu, Heng Wu, M. Hatzistergos, P. Hung, R. Tieckelmann, W. Tsai, C. Hobbs, P. Ye","doi":"10.1109/VLSIT.2014.6894432","DOIUrl":null,"url":null,"abstract":"In this paper, we report a novel chemical doping technique to reduce the contact resistance (R<sub>c</sub>) of transition metal dichalcogenides (TMDs) - eliminating two major roadblocks (namely, doping and high R<sub>c</sub>) towards demonstration of high-performance TMDs field-effect transistors (FETs). By using 1,2 dichloroethane (DCE) as the doping reagent, we demonstrate an active n-type doping density > 2×10<sup>19</sup> cm<sup>-3</sup> in a few-layer MoS<sub>2</sub> film. This enabled us to reduce the R<sub>c</sub> value to a record low number of 0.5 kΩ·μm, which is ~10×lower than the control sample without doping. The corresponding specific contact resistivity (ρ<sub>c</sub>) is found to decrease by two orders of magnitude. With such low R<sub>c</sub>, we demonstrate 100 nm channel length (L<sub>ch</sub>) MoS<sub>2</sub> FET with a drain current (I<sub>ds</sub>) of 460 μA/μm at V<sub>ds</sub> = 1.6 V, which is twice the best value reported so far on MoS<sub>2</sub> FETs.","PeriodicalId":105807,"journal":{"name":"2014 Symposium on VLSI Technology (VLSI-Technology): Digest of Technical Papers","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"54","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Symposium on VLSI Technology (VLSI-Technology): Digest of Technical Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSIT.2014.6894432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 54

Abstract

In this paper, we report a novel chemical doping technique to reduce the contact resistance (Rc) of transition metal dichalcogenides (TMDs) - eliminating two major roadblocks (namely, doping and high Rc) towards demonstration of high-performance TMDs field-effect transistors (FETs). By using 1,2 dichloroethane (DCE) as the doping reagent, we demonstrate an active n-type doping density > 2×1019 cm-3 in a few-layer MoS2 film. This enabled us to reduce the Rc value to a record low number of 0.5 kΩ·μm, which is ~10×lower than the control sample without doping. The corresponding specific contact resistivity (ρc) is found to decrease by two orders of magnitude. With such low Rc, we demonstrate 100 nm channel length (Lch) MoS2 FET with a drain current (Ids) of 460 μA/μm at Vds = 1.6 V, which is twice the best value reported so far on MoS2 FETs.
氯化物掺杂实现高性能MoS2场效应晶体管:创纪录的低接触电阻(0.5 kΩ·µm)和创纪录的高漏极电流(460µA/µm)
在本文中,我们报告了一种新的化学掺杂技术,以降低过渡金属二硫化物(TMDs)的接触电阻(Rc),消除了高性能TMDs场效应晶体管(fet)演示的两个主要障碍(即掺杂和高Rc)。以1,2 -二氯乙烷(DCE)为掺杂剂,在少量二硫化钼薄膜中发现了活性n型掺杂密度> 2×1019 cm-3。这使我们能够将Rc值降低到创纪录的0.5 kΩ·μm,比未掺杂的对照样品低~10×lower。相应的比接触电阻率(ρc)降低了两个数量级。在如此低的Rc下,我们展示了100 nm通道长度(Lch)的MoS2 FET,在Vds = 1.6 V时漏极电流(Ids)为460 μA/μm,这是迄今为止报道的MoS2 FET最佳值的两倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信