Licai Fang, Lu Xu, Qinghua Guo, D. Huang, S. Nordholm
{"title":"A hybrid iterative MIMO detection algorithm: Partial Gaussian approach with integer programming","authors":"Licai Fang, Lu Xu, Qinghua Guo, D. Huang, S. Nordholm","doi":"10.1109/ICCChina.2014.7008322","DOIUrl":null,"url":null,"abstract":"In this paper, after showing MMSE-SIC suffers from performance loss when the channel is spatially correlated for Massive MIMO, we propose an effective hybrid iterative detection algorithm named partial Gaussian approach with integer programming (PGA-IP) to handle correlated channels. In PGA-IP, a partial gaussian approach is first employed to reduce the massive MIMO detection (with large dimension Nt ×Nr MIMO channel) to a problem of marginalizing M (M is a parameter and M≪ Nt, Nr) discrete valued symbols over an M-degree quadratic function. Then we employ integer programming which is a tree based branch-and-bound search algorithm to further reduce the complexity of the M-dimensional marginalization. Simulation results show that the proposed PGA-IP outperforms MMSE-SIC by about 5dB under heavily correlated channel with only several times of increased computational complexity. At the same time, with about 5% of the complexity of the exact PGA algorithm, the proposed PGA-IP only suffers marginal performance penalty.","PeriodicalId":353402,"journal":{"name":"2014 IEEE/CIC International Conference on Communications in China (ICCC)","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE/CIC International Conference on Communications in China (ICCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCChina.2014.7008322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, after showing MMSE-SIC suffers from performance loss when the channel is spatially correlated for Massive MIMO, we propose an effective hybrid iterative detection algorithm named partial Gaussian approach with integer programming (PGA-IP) to handle correlated channels. In PGA-IP, a partial gaussian approach is first employed to reduce the massive MIMO detection (with large dimension Nt ×Nr MIMO channel) to a problem of marginalizing M (M is a parameter and M≪ Nt, Nr) discrete valued symbols over an M-degree quadratic function. Then we employ integer programming which is a tree based branch-and-bound search algorithm to further reduce the complexity of the M-dimensional marginalization. Simulation results show that the proposed PGA-IP outperforms MMSE-SIC by about 5dB under heavily correlated channel with only several times of increased computational complexity. At the same time, with about 5% of the complexity of the exact PGA algorithm, the proposed PGA-IP only suffers marginal performance penalty.