Application of sparse prior in aperture synthesis radiometric imaging of extended radiation source

He Fang-min, Wang Qian, Xiao Huan, Li Yi, Tang Jian, Meng Jin
{"title":"Application of sparse prior in aperture synthesis radiometric imaging of extended radiation source","authors":"He Fang-min, Wang Qian, Xiao Huan, Li Yi, Tang Jian, Meng Jin","doi":"10.1109/ICSPCC.2013.6663985","DOIUrl":null,"url":null,"abstract":"Aimed at the extended source of earth thermal radiation scene, the sparse prior is extracted from the transform domain, and used in the statistical inversion approach (SIA) to deal with the inverse problem in aperture synthesis radiometric imaging of the extended source. As the transform basis, Laplace basis, Fourier basis and Daubechies wavelet basis are proposed to explore the implicit sparse prior about the extended source. For the SIA, the image inversion of aperture synthesis radiometers is recast as the statistical inference about the hyperparameters based the sparse prior in the transform domain, which can be automatically derived from an expectation maximization (EM) algorithm. The simulations show that the proposed SIA can improve the radiometric accuracy of the reconstructed image by introducing the sparse prior as compared to the traditional deterministic inversion approaches.","PeriodicalId":124509,"journal":{"name":"2013 IEEE International Conference on Signal Processing, Communication and Computing (ICSPCC 2013)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Signal Processing, Communication and Computing (ICSPCC 2013)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSPCC.2013.6663985","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Aimed at the extended source of earth thermal radiation scene, the sparse prior is extracted from the transform domain, and used in the statistical inversion approach (SIA) to deal with the inverse problem in aperture synthesis radiometric imaging of the extended source. As the transform basis, Laplace basis, Fourier basis and Daubechies wavelet basis are proposed to explore the implicit sparse prior about the extended source. For the SIA, the image inversion of aperture synthesis radiometers is recast as the statistical inference about the hyperparameters based the sparse prior in the transform domain, which can be automatically derived from an expectation maximization (EM) algorithm. The simulations show that the proposed SIA can improve the radiometric accuracy of the reconstructed image by introducing the sparse prior as compared to the traditional deterministic inversion approaches.
稀疏先验在扩展辐射源孔径合成辐射成像中的应用
针对地球热辐射场景的扩展源,从变换域中提取稀疏先验,并将稀疏先验应用于统计反演方法(SIA)中,解决扩展源孔径合成辐射成像中的反演问题。提出拉普拉斯基、傅立叶基和Daubechies小波基作为变换基来探索扩展源的隐式稀疏先验。该方法将孔径合成辐射计的图像反演转化为基于变换域稀疏先验的超参数统计推断,并通过期望最大化算法自动导出。仿真结果表明,与传统的确定性反演方法相比,该方法通过引入稀疏先验,提高了重建图像的辐射精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信