A Robust Neural Predictive Control Approach for Robotic Manipulators with Online Learning Ability

Nguyen Hai Phong, Dang Xuan Ba
{"title":"A Robust Neural Predictive Control Approach for Robotic Manipulators with Online Learning Ability","authors":"Nguyen Hai Phong, Dang Xuan Ba","doi":"10.1109/ICCAIS56082.2022.9990358","DOIUrl":null,"url":null,"abstract":"In this paper, we develop a new predictive controller for tracking control problems of robotic manipulators. Internal dynamics of the robotic model are first modeled using proper neural networks under support of an output feedback control signal. A new model predictive control signal is next derived to realize the control objective in a robust manner. Novel adaptation laws are then proposed to activate the network learning in an effective way. Effectiveness of the proposed controller has been validated throughout intensive simulation results on two degree of freedom robot.","PeriodicalId":273404,"journal":{"name":"2022 11th International Conference on Control, Automation and Information Sciences (ICCAIS)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 11th International Conference on Control, Automation and Information Sciences (ICCAIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAIS56082.2022.9990358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we develop a new predictive controller for tracking control problems of robotic manipulators. Internal dynamics of the robotic model are first modeled using proper neural networks under support of an output feedback control signal. A new model predictive control signal is next derived to realize the control objective in a robust manner. Novel adaptation laws are then proposed to activate the network learning in an effective way. Effectiveness of the proposed controller has been validated throughout intensive simulation results on two degree of freedom robot.
具有在线学习能力的机械臂鲁棒神经预测控制方法
本文针对机械臂的跟踪控制问题,提出了一种新的预测控制器。首先在输出反馈控制信号的支持下,利用适当的神经网络对机器人模型的内部动力学进行建模。然后推导出一种新的模型预测控制信号,以鲁棒性地实现控制目标。在此基础上提出了新的适应规律,以有效激活网络学习。通过对二自由度机器人的大量仿真结果验证了所提控制器的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信