A novel technique for tracking time-varying minimum and its applications

Y. Zhao, M. Swamy
{"title":"A novel technique for tracking time-varying minimum and its applications","authors":"Y. Zhao, M. Swamy","doi":"10.1109/CCECE.1998.685646","DOIUrl":null,"url":null,"abstract":"A technique for tracking the time-varying minimum of a time-dependent function is proposed. It ensures the tracking process converge exponentially. It also enables the tracking to move from the minimum at one instant of time to the minimum at the next instant of time, without any error. Examples are given to show that this technique is effective for tracking the time-varying minimum. Application of this technique to on-line continuous system identification, on-line neural network learning, etc. gives rise to improved results.","PeriodicalId":177613,"journal":{"name":"Conference Proceedings. IEEE Canadian Conference on Electrical and Computer Engineering (Cat. No.98TH8341)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Proceedings. IEEE Canadian Conference on Electrical and Computer Engineering (Cat. No.98TH8341)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCECE.1998.685646","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

A technique for tracking the time-varying minimum of a time-dependent function is proposed. It ensures the tracking process converge exponentially. It also enables the tracking to move from the minimum at one instant of time to the minimum at the next instant of time, without any error. Examples are given to show that this technique is effective for tracking the time-varying minimum. Application of this technique to on-line continuous system identification, on-line neural network learning, etc. gives rise to improved results.
一种新的时变最小值跟踪技术及其应用
提出了一种跟踪时变函数最小值的方法。它保证了跟踪过程呈指数收敛。它还使跟踪从一个时刻的最小值移动到下一个时刻的最小值,没有任何误差。算例表明,该方法对跟踪时变最小值是有效的。将该技术应用于在线连续系统辨识、在线神经网络学习等方面,取得了较好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信