Continuous Control of Style through Linear Interpolation in Hidden Markov Model Based Stylistic Walk Synthesis

J. Tilmanne, T. Dutoit
{"title":"Continuous Control of Style through Linear Interpolation in Hidden Markov Model Based Stylistic Walk Synthesis","authors":"J. Tilmanne, T. Dutoit","doi":"10.1109/CW.2011.27","DOIUrl":null,"url":null,"abstract":"In this work, we present a Hidden Markov Model (HMM) based stylistic walk synthesizer, where the synthesized styles are combinations or exaggerations of the walk styles present in the training database. In a first stage, Hidden Markov Models of eleven different styles of gait are trained, using a database of motion capture walk sequences. In a second stage, the probability density functions inside the stylistic models are interpolated or extrapolated in order to synthesize walks with styles or style intensities that were not present in the training database. A continuous model of the style parameter space is thus constructed around the eleven original walk styles. An informal user evaluation of the synthesized sequences showed that the naturalness of motions is preserved after linear interpolation.","PeriodicalId":231796,"journal":{"name":"2011 International Conference on Cyberworlds","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Cyberworlds","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CW.2011.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this work, we present a Hidden Markov Model (HMM) based stylistic walk synthesizer, where the synthesized styles are combinations or exaggerations of the walk styles present in the training database. In a first stage, Hidden Markov Models of eleven different styles of gait are trained, using a database of motion capture walk sequences. In a second stage, the probability density functions inside the stylistic models are interpolated or extrapolated in order to synthesize walks with styles or style intensities that were not present in the training database. A continuous model of the style parameter space is thus constructed around the eleven original walk styles. An informal user evaluation of the synthesized sequences showed that the naturalness of motions is preserved after linear interpolation.
基于隐马尔可夫模型的风格步行合成中线性插值的风格连续控制
在这项工作中,我们提出了一个基于隐马尔可夫模型(HMM)的风格步行合成器,其中合成的风格是训练数据库中存在的步行风格的组合或夸张。在第一阶段,使用动作捕捉行走序列数据库训练11种不同步态风格的隐马尔可夫模型。在第二阶段,风格模型内的概率密度函数被内插或外推,以合成训练数据库中不存在的风格或风格强度的行走。因此,围绕11种原始步行方式构建了风格参数空间的连续模型。对合成序列的非正式用户评价表明,在线性插值后,运动的自然性得到了保留。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信