Multiclass feature selection algorithms base on R-SVM

Qifeng Xu, Xuegong Zhang
{"title":"Multiclass feature selection algorithms base on R-SVM","authors":"Qifeng Xu, Xuegong Zhang","doi":"10.1109/ChinaSIP.2014.6889298","DOIUrl":null,"url":null,"abstract":"Feature selection is an important task in machine learning. Most existing feature selection methods were designed for two-class classification problems. Multiclass feature selection algorithm is less available. R-SVM or Recursive SVM is a SVM-based embedded feature selection algorithm proposed by Zhang et al[5]. It provides the function of recursive feature selection and outperforms another similar method SVM-RFE (SVM Recursive Feature Elimination) on noisy data and has become popular in bioinformatics. But both R-SVM and SVM-RFE support only binary classification. We extend R-SVM to multi-class classification and also implement the multiclass SVM-RFE method in the workflow of R-SVM. Both methods achieve good performance applied to commonly used bioinformatics datasets.","PeriodicalId":248977,"journal":{"name":"2014 IEEE China Summit & International Conference on Signal and Information Processing (ChinaSIP)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE China Summit & International Conference on Signal and Information Processing (ChinaSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ChinaSIP.2014.6889298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Feature selection is an important task in machine learning. Most existing feature selection methods were designed for two-class classification problems. Multiclass feature selection algorithm is less available. R-SVM or Recursive SVM is a SVM-based embedded feature selection algorithm proposed by Zhang et al[5]. It provides the function of recursive feature selection and outperforms another similar method SVM-RFE (SVM Recursive Feature Elimination) on noisy data and has become popular in bioinformatics. But both R-SVM and SVM-RFE support only binary classification. We extend R-SVM to multi-class classification and also implement the multiclass SVM-RFE method in the workflow of R-SVM. Both methods achieve good performance applied to commonly used bioinformatics datasets.
基于R-SVM的多类特征选择算法
特征选择是机器学习中的一项重要任务。大多数现有的特征选择方法都是针对两类分类问题设计的。多类特征选择算法的可用性较低。R-SVM或递归支持向量机(Recursive SVM)是Zhang等人[5]提出的一种基于SVM的嵌入式特征选择算法。它提供了递归特征选择的功能,并且优于另一种类似的方法SVM- rfe (SVM递归特征消除),在生物信息学中得到了广泛的应用。但是R-SVM和SVM-RFE都只支持二值分类。我们将R-SVM扩展到多类分类,并在R-SVM的工作流程中实现了多类SVM-RFE方法。应用于常用的生物信息学数据集,两种方法都取得了良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信