Automatic diagnosis of Hypoacusia with Associative Memories

M. Acevedo-Mosqueda, Julia Calderón, M. A. Acevedo-Mosqueda, Federico Felipe
{"title":"Automatic diagnosis of Hypoacusia with Associative Memories","authors":"M. Acevedo-Mosqueda, Julia Calderón, M. A. Acevedo-Mosqueda, Federico Felipe","doi":"10.1145/3293614.3293654","DOIUrl":null,"url":null,"abstract":"Hypoacusia 1 is the reduction in hearing ability. An early diagnose could avoid the complete loss of the sense of hearing. We propose a modification of modified Johnson-Möbius together with a tool of Artificial Intelligence to diagnose hearing losing. The modified Johnson-Möbius has been showed suitable results when it was used with Alpha-Beta associative memories that deal with binary numbers. Now, we modified this code to apply it to Morphological associative memories whose set of numbers is real-type. Based on the improved results of Alpha-Beta memories with this codification, we applied the modification of the code to improve the performance of Morphological memories with feature selection. The results are suitable to implement an automatic system for hypoacusia diagnosis.","PeriodicalId":359590,"journal":{"name":"Proceedings of the Euro American Conference on Telematics and Information Systems","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Euro American Conference on Telematics and Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3293614.3293654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Hypoacusia 1 is the reduction in hearing ability. An early diagnose could avoid the complete loss of the sense of hearing. We propose a modification of modified Johnson-Möbius together with a tool of Artificial Intelligence to diagnose hearing losing. The modified Johnson-Möbius has been showed suitable results when it was used with Alpha-Beta associative memories that deal with binary numbers. Now, we modified this code to apply it to Morphological associative memories whose set of numbers is real-type. Based on the improved results of Alpha-Beta memories with this codification, we applied the modification of the code to improve the performance of Morphological memories with feature selection. The results are suitable to implement an automatic system for hypoacusia diagnosis.
联想记忆对耳聋的自动诊断
听力减退是指听力能力下降。早期诊断可以避免完全丧失听觉。我们提出修改后的Johnson-Möbius,并结合人工智能工具来诊断听力损失。修改后的Johnson-Möbius在与处理二进制数的Alpha-Beta联想记忆一起使用时显示出合适的结果。现在,我们修改了这个代码,把它应用到形态学联想记忆中,它的一组数字是实数。在Alpha-Beta记忆编码改进结果的基础上,我们将编码的修改应用于具有特征选择的形态学记忆的改进。结果表明,该系统可用于耳聋自动诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信