On extension of fuzzy measures to aggregation functions

A. Kolesárová, A. Stupňanová, Juliana Beganová
{"title":"On extension of fuzzy measures to aggregation functions","authors":"A. Kolesárová, A. Stupňanová, Juliana Beganová","doi":"10.2991/eusflat.2011.11","DOIUrl":null,"url":null,"abstract":"In the paper we study a method extending fuzzy measures on the set N = {1, . . . , n} to n-ary aggregation functions on the interval [0, 1]. The method is based on a fixed suitable n-ary aggregation function and the Mobius transform of the considered fuzzy measure. This approach generalizes the wellknown Lovasz and Owen extensions of fuzzy measures. We focus our attention on the special class of n-dimensional Archimedean quasi-copulas and prove characterization of all suitable n-dimensional Archimedean quasi-copulas. We also present a special universal extension method based on a suitable associative binary aggregation function. Several examples are included.","PeriodicalId":403191,"journal":{"name":"EUSFLAT Conf.","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EUSFLAT Conf.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2991/eusflat.2011.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In the paper we study a method extending fuzzy measures on the set N = {1, . . . , n} to n-ary aggregation functions on the interval [0, 1]. The method is based on a fixed suitable n-ary aggregation function and the Mobius transform of the considered fuzzy measure. This approach generalizes the wellknown Lovasz and Owen extensions of fuzzy measures. We focus our attention on the special class of n-dimensional Archimedean quasi-copulas and prove characterization of all suitable n-dimensional Archimedean quasi-copulas. We also present a special universal extension method based on a suitable associative binary aggregation function. Several examples are included.
模糊测度在聚集函数中的推广
本文研究了集N ={1,…上模糊测度的扩展方法。, n}到n元的区间[0,1]上的聚合函数。该方法基于一个固定的合适的n元聚合函数和所考虑的模糊测度的莫比乌斯变换。这种方法推广了著名的模糊测度的Lovasz和Owen扩展。研究了一类特殊的n维阿基米德拟copulas,并证明了所有合适的n维阿基米德拟copulas的性质。我们还提出了一种基于合适的关联二值聚合函数的特殊的通用扩展方法。包括几个例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信