The Real-time Control Framework for a Modular Snake Robot

Yunhu Zhou, Zhiqi Li, Yuanfei Zhang, F. Ni, Yongjun Sun, Hong Liu
{"title":"The Real-time Control Framework for a Modular Snake Robot","authors":"Yunhu Zhou, Zhiqi Li, Yuanfei Zhang, F. Ni, Yongjun Sun, Hong Liu","doi":"10.1109/ICRAE48301.2019.9043797","DOIUrl":null,"url":null,"abstract":"The Robot Operating System (ROS) is widely adopted for the control of the robots which is usually running on the Linux system with a standard kernel. But snake robot has a high requirement for the real-time of the control framework since it has several modules which contain a variety of sensors. To solve the problem, the control frame based on the Xenomai real-time system is developed by inserting a patch to the kernel and the real-time performance can be further enhanced by priority scheduling. The proposed control framework of the snake robot is applied to deal with the non- real-time communication thread with ROS packages and the real-time communication thread with the joint controller. So the application programs based on the proposed control framework can realize the multi-task function and be compatible with the ROS system. At last, the experiments validate that the control framework can control the hardware of the snake robot efficiently.","PeriodicalId":270665,"journal":{"name":"2019 4th International Conference on Robotics and Automation Engineering (ICRAE)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 4th International Conference on Robotics and Automation Engineering (ICRAE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRAE48301.2019.9043797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Robot Operating System (ROS) is widely adopted for the control of the robots which is usually running on the Linux system with a standard kernel. But snake robot has a high requirement for the real-time of the control framework since it has several modules which contain a variety of sensors. To solve the problem, the control frame based on the Xenomai real-time system is developed by inserting a patch to the kernel and the real-time performance can be further enhanced by priority scheduling. The proposed control framework of the snake robot is applied to deal with the non- real-time communication thread with ROS packages and the real-time communication thread with the joint controller. So the application programs based on the proposed control framework can realize the multi-task function and be compatible with the ROS system. At last, the experiments validate that the control framework can control the hardware of the snake robot efficiently.
模块化蛇形机器人的实时控制框架
机器人操作系统(ROS)被广泛用于控制机器人,机器人通常运行在带有标准内核的Linux系统上。但由于蛇形机器人有多个模块,其中包含多种传感器,因此对控制框架的实时性要求很高。为了解决这一问题,在Xenomai实时系统的基础上,通过在内核中插入补丁的方式开发了控制帧,并通过优先级调度进一步提高了实时性能。将提出的蛇形机器人控制框架应用于处理与ROS包之间的非实时通信线程和与关节控制器之间的实时通信线程。因此,基于所提出的控制框架的应用程序可以实现多任务功能,并与ROS系统兼容。最后,通过实验验证了该控制框架能够有效地控制蛇形机器人的硬件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信