Fast nonlinear model order reduction via associated transforms of high-order Volterra transfer functions

Yang Zhang, Haotian Liu, Qing Wang, N. Fong, N. Wong
{"title":"Fast nonlinear model order reduction via associated transforms of high-order Volterra transfer functions","authors":"Yang Zhang, Haotian Liu, Qing Wang, N. Fong, N. Wong","doi":"10.1145/2228360.2228415","DOIUrl":null,"url":null,"abstract":"We present a new and fast way of computing the projection matrices serving high-order Volterra transfer functions in the context of (weakly and strongly) nonlinear model order reduction. The novelty is to perform, for the first time, the association of multivariate (Laplace) variables in high-order multiple-input multiple-output (MIMO) transfer functions to generate the standard single-s transfer functions. The consequence is obvious: instead of finding projection subspaces about every si, only that about a singles is required. This translates into drastic saving in computation and memory, and much more compact reduced-order nonlinear models, without compromising any accuracy.","PeriodicalId":263599,"journal":{"name":"DAC Design Automation Conference 2012","volume":"199 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DAC Design Automation Conference 2012","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2228360.2228415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

We present a new and fast way of computing the projection matrices serving high-order Volterra transfer functions in the context of (weakly and strongly) nonlinear model order reduction. The novelty is to perform, for the first time, the association of multivariate (Laplace) variables in high-order multiple-input multiple-output (MIMO) transfer functions to generate the standard single-s transfer functions. The consequence is obvious: instead of finding projection subspaces about every si, only that about a singles is required. This translates into drastic saving in computation and memory, and much more compact reduced-order nonlinear models, without compromising any accuracy.
通过高阶Volterra传递函数的关联变换快速非线性模型降阶
在(弱和强)非线性模型降阶的背景下,提出了一种新的计算高阶Volterra传递函数的投影矩阵的快速方法。新颖之处在于,首次在高阶多输入多输出(MIMO)传递函数中执行多变量(拉普拉斯)变量的关联,以生成标准的单s传递函数。其结果是显而易见的:不需要寻找每一个si的投影子空间,而只需要一个单点的投影子空间。这转化为计算和内存的极大节省,以及更紧凑的降阶非线性模型,而不影响任何准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信