Model performance between linear vector autoregressive and Markov switching vector autoregressive models on modelling structural change in time series data

Phoong Seuk Wai, M. Ismail, S. Kun, Samsul Ariffin, Abdul Karim
{"title":"Model performance between linear vector autoregressive and Markov switching vector autoregressive models on modelling structural change in time series data","authors":"Phoong Seuk Wai, M. Ismail, S. Kun, Samsul Ariffin, Abdul Karim","doi":"10.1109/ISMSC.2015.7594083","DOIUrl":null,"url":null,"abstract":"Real financial time series data always exhibit structural change, jumps or breaks. Thus, in this paper, the performance of the linear vector autoregressive model (VAR), mean adjusted Markov switching vector autoregressive model (MSM-VAR) and mean adjusted heteroskedasticity Markov switching vector autoregressive model (MSMH-VAR) are applied in order to examine the oil price return and the gold price return effect on stock market returns. The two break point tests indicate the existence of break dates in the data. In addition, a comparison among the three model's performance show that the two Markov switching vector autoregressive models with first autoregressive order able to provide the most significance, reliable and valid results as compared to linear vector autoregressive.","PeriodicalId":407600,"journal":{"name":"2015 International Symposium on Mathematical Sciences and Computing Research (iSMSC)","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Symposium on Mathematical Sciences and Computing Research (iSMSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMSC.2015.7594083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Real financial time series data always exhibit structural change, jumps or breaks. Thus, in this paper, the performance of the linear vector autoregressive model (VAR), mean adjusted Markov switching vector autoregressive model (MSM-VAR) and mean adjusted heteroskedasticity Markov switching vector autoregressive model (MSMH-VAR) are applied in order to examine the oil price return and the gold price return effect on stock market returns. The two break point tests indicate the existence of break dates in the data. In addition, a comparison among the three model's performance show that the two Markov switching vector autoregressive models with first autoregressive order able to provide the most significance, reliable and valid results as compared to linear vector autoregressive.
线性向量自回归模型与马尔可夫切换向量自回归模型对时间序列数据结构变化的建模性能
真实的金融时间序列数据总是表现出结构性变化、跳跃或中断。因此,本文运用线性向量自回归模型(VAR)、均值调整马尔可夫切换向量自回归模型(MSM-VAR)和均值调整异方差马尔可夫切换向量自回归模型(MSMH-VAR)的性能来检验石油价格回报和黄金价格回报对股市回报的影响。两个断点测试表明数据中存在断点日期。此外,三种模型的性能比较表明,与线性向量自回归相比,具有一阶自回归的两种马尔可夫切换向量自回归模型能够提供最显著、可靠和有效的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信