Human-machine co-construct intelligence on horizon year load in long term spatial load forecasting

Tao Hong, S. Hsiang, Le Xu
{"title":"Human-machine co-construct intelligence on horizon year load in long term spatial load forecasting","authors":"Tao Hong, S. Hsiang, Le Xu","doi":"10.1109/PES.2009.5275308","DOIUrl":null,"url":null,"abstract":"Horizon year load (HYL) is an important parameter in load forecasting algorithms that involve the Gompertz functions. Land use information has been utilized to determine HYL by computerized program. However, this approach fails when computer tries to seek optimal solution but ignores the physical meaning of the data, which can be overcome by the planners. This paper proposes and implements a methodology to determine horizon year load using land use information and planners' domain knowledge. The proposed methodology has been implemented and applied to several US utility companies to calculate the HYL of the small areas in the service territory. The resulting HYL has been used to drive the long-term electric load growth forecasting and to get satisfying forecast.","PeriodicalId":258632,"journal":{"name":"2009 IEEE Power & Energy Society General Meeting","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Power & Energy Society General Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PES.2009.5275308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Horizon year load (HYL) is an important parameter in load forecasting algorithms that involve the Gompertz functions. Land use information has been utilized to determine HYL by computerized program. However, this approach fails when computer tries to seek optimal solution but ignores the physical meaning of the data, which can be overcome by the planners. This paper proposes and implements a methodology to determine horizon year load using land use information and planners' domain knowledge. The proposed methodology has been implemented and applied to several US utility companies to calculate the HYL of the small areas in the service territory. The resulting HYL has been used to drive the long-term electric load growth forecasting and to get satisfying forecast.
长期空间负荷预测中地平线年负荷人机协同智能
水平年负荷(HYL)是涉及Gompertz函数的负荷预测算法中的一个重要参数。利用土地利用信息,通过计算机程序确定HYL。然而,当计算机试图寻求最优解但忽略了数据的物理意义时,这种方法就失败了,而规划者可以克服这一点。本文提出并实现了一种利用土地利用信息和规划者领域知识确定地平线年负荷的方法。所提出的方法已被实施并应用于几家美国公用事业公司,以计算服务区域内小区域的HYL。将所得的HYL用于长期负荷增长预测,并得到了满意的预测结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信