{"title":"A Modified Stochastic Gompertz Model for Tumour Cell Growth","authors":"Edward Chi-Fai Lo","doi":"10.1080/17486700802545543","DOIUrl":null,"url":null,"abstract":"Based upon the deterministic Gompertz law of cell growth, we have proposed a stochastic model of tumour cell growth, in which the size of the tumour cells is bounded. The model takes account of both cell fission (which is an ‘action at a distance’ effect) and mortality too. Accordingly, the density function of the size of the tumour cells obeys a functional Fokker–Planck Equation (FPE) associated with the bounded stochastic process. We apply the Lie-algebraic method to derive the exact analytical solution via an iterative approach. It is found that the density function exhibits an interesting kink-like structure generated by cell fission as time evolves.","PeriodicalId":182719,"journal":{"name":"Comput. Math. Methods Medicine","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comput. Math. Methods Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17486700802545543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28
Abstract
Based upon the deterministic Gompertz law of cell growth, we have proposed a stochastic model of tumour cell growth, in which the size of the tumour cells is bounded. The model takes account of both cell fission (which is an ‘action at a distance’ effect) and mortality too. Accordingly, the density function of the size of the tumour cells obeys a functional Fokker–Planck Equation (FPE) associated with the bounded stochastic process. We apply the Lie-algebraic method to derive the exact analytical solution via an iterative approach. It is found that the density function exhibits an interesting kink-like structure generated by cell fission as time evolves.