Analysis of safety systems with on-demand and dynamic failure modes

L. Meshkat, J. Bechta Dugan, J. Andrews
{"title":"Analysis of safety systems with on-demand and dynamic failure modes","authors":"L. Meshkat, J. Bechta Dugan, J. Andrews","doi":"10.1109/RAMS.2000.816277","DOIUrl":null,"url":null,"abstract":"An approach for the reliability analysis of systems with on demand and dynamic failure modes is presented. Safety systems such as sprinkler systems or other protection systems are characterized by such failure behavior. They have support subsystems to start up the system on demand, and once they start running, they are prone to dynamic failure. Failure on demand requires an availability analysis of components (typically electromechanical components) which are required to start or support the safety system. Once the safety system is started, it is often reasonable to assume that these support components do not fail while running. Further, these support components may be tested and maintained periodically while not in active use. Dynamic failure refers to the failure while running (once started) of the active components of the safety system. These active components may be fault tolerant and utilize spares or other forms of redundancy, but are not maintainable while in use. In this paper, the authors describe a simple yet powerful approach to combining the availability analysis of the static components with a reliability analysis of the dynamic components. This approach is explained using a hypothetical example sprinkler system, and applied to a water deluge system taken from the offshore industry. The approach is implemented in the fault tree analysis software package, Galileo.","PeriodicalId":178321,"journal":{"name":"Annual Reliability and Maintainability Symposium. 2000 Proceedings. International Symposium on Product Quality and Integrity (Cat. No.00CH37055)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Reliability and Maintainability Symposium. 2000 Proceedings. International Symposium on Product Quality and Integrity (Cat. No.00CH37055)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RAMS.2000.816277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

An approach for the reliability analysis of systems with on demand and dynamic failure modes is presented. Safety systems such as sprinkler systems or other protection systems are characterized by such failure behavior. They have support subsystems to start up the system on demand, and once they start running, they are prone to dynamic failure. Failure on demand requires an availability analysis of components (typically electromechanical components) which are required to start or support the safety system. Once the safety system is started, it is often reasonable to assume that these support components do not fail while running. Further, these support components may be tested and maintained periodically while not in active use. Dynamic failure refers to the failure while running (once started) of the active components of the safety system. These active components may be fault tolerant and utilize spares or other forms of redundancy, but are not maintainable while in use. In this paper, the authors describe a simple yet powerful approach to combining the availability analysis of the static components with a reliability analysis of the dynamic components. This approach is explained using a hypothetical example sprinkler system, and applied to a water deluge system taken from the offshore industry. The approach is implemented in the fault tree analysis software package, Galileo.
具有随需应变和动态失效模式的安全系统分析
提出了一种基于随需应变和动态失效模式的系统可靠性分析方法。安全系统,如喷水灭火系统或其他保护系统,具有这种故障行为的特征。它们有支持子系统来按需启动系统,一旦它们开始运行,它们就容易发生动态故障。按需故障需要对启动或支持安全系统所需的组件(通常是机电组件)进行可用性分析。一旦安全系统启动,通常可以合理地假设这些支持组件在运行时不会发生故障。此外,这些支持组件可以在不积极使用时进行定期测试和维护。动态故障是指安全系统主动部件在运行过程中(一旦启动)发生的故障。这些活动组件可能是容错的,并利用备件或其他形式的冗余,但在使用时不可维护。在本文中,作者描述了一种简单而强大的方法,将静态组件的可用性分析与动态组件的可靠性分析相结合。本文以一个假设的洒水系统为例,对该方法进行了解释,并将其应用于海上工业的喷水灭火系统。该方法在故障树分析软件包Galileo中实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信