A two-step method of searching for similar images in a large image database

L. K. Sitnikova, M. Elantcev, R. Sultanov
{"title":"A two-step method of searching for similar images in a large image database","authors":"L. K. Sitnikova, M. Elantcev, R. Sultanov","doi":"10.22213/ie022143","DOIUrl":null,"url":null,"abstract":"This article analyzes the methods of searching for similar images in a large database, examines in detail the search for images using perceptual hashes with Hamming distance calculation, using a convolutional neural network and using these methods together. The analysis of the speed and accuracy of the method of searching for similar images by comparing perceptual hashes, the analysis of the accuracy of image classification using a convolutional neural network, the analysis of speed and accuracy when they are used together, including with small changes in images (cropping, rotation, contrast change, sharpness change). According to the results of the study, it was revealed that the joint use of the perceptual hash comparison method and the classification method using a neural network is the most effective.","PeriodicalId":238277,"journal":{"name":"Proceedings of the 33th All-Russian Youth Exhibition of Innovations - InnoExh '22/1","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 33th All-Russian Youth Exhibition of Innovations - InnoExh '22/1","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22213/ie022143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article analyzes the methods of searching for similar images in a large database, examines in detail the search for images using perceptual hashes with Hamming distance calculation, using a convolutional neural network and using these methods together. The analysis of the speed and accuracy of the method of searching for similar images by comparing perceptual hashes, the analysis of the accuracy of image classification using a convolutional neural network, the analysis of speed and accuracy when they are used together, including with small changes in images (cropping, rotation, contrast change, sharpness change). According to the results of the study, it was revealed that the joint use of the perceptual hash comparison method and the classification method using a neural network is the most effective.
在大型图像数据库中搜索相似图像的两步方法
本文分析了在大型数据库中搜索相似图像的方法,详细研究了使用带有汉明距离计算的感知哈希,使用卷积神经网络以及将这些方法结合使用的图像搜索方法。通过比较感知哈希来搜索相似图像的方法的速度和精度分析,使用卷积神经网络进行图像分类的精度分析,它们一起使用时的速度和精度分析,包括图像的微小变化(裁剪,旋转,对比度变化,清晰度变化)。研究结果表明,结合使用感知哈希比较方法和使用神经网络的分类方法是最有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信