Why GloVe Shows Negative Effects in Malware Classification

Bingchu Jin, Zesheng Hu, Jianhua Wang, Monong Wei, Yawei Zhao, Chao Xue
{"title":"Why GloVe Shows Negative Effects in Malware Classification","authors":"Bingchu Jin, Zesheng Hu, Jianhua Wang, Monong Wei, Yawei Zhao, Chao Xue","doi":"10.1109/EI256261.2022.10116082","DOIUrl":null,"url":null,"abstract":"The past decades witness the development of various Machine Learning (ML) models for malware classification. Semantic representation is a crucial basis for these classifiers. This paper aims to assess the effect of semantic representation methods on malware classifier performance. Two commonly-used semantic representation methods including N-gram and GloVe. We utilize diverse ML classifiers to conduct comparative experiments to analyze the capability of N-gram, GloVe and image-based methods for malware classification. We also analyze deeply the reason why the GloVe can produce negative effects on malware static analysis.","PeriodicalId":413409,"journal":{"name":"2022 IEEE 6th Conference on Energy Internet and Energy System Integration (EI2)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 6th Conference on Energy Internet and Energy System Integration (EI2)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EI256261.2022.10116082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The past decades witness the development of various Machine Learning (ML) models for malware classification. Semantic representation is a crucial basis for these classifiers. This paper aims to assess the effect of semantic representation methods on malware classifier performance. Two commonly-used semantic representation methods including N-gram and GloVe. We utilize diverse ML classifiers to conduct comparative experiments to analyze the capability of N-gram, GloVe and image-based methods for malware classification. We also analyze deeply the reason why the GloVe can produce negative effects on malware static analysis.
为什么GloVe在恶意软件分类中表现出负面影响
过去几十年见证了各种恶意软件分类机器学习(ML)模型的发展。语义表示是这些分类器的重要基础。本文旨在评估语义表示方法对恶意软件分类器性能的影响。两种常用的语义表示方法包括N-gram和GloVe。我们利用不同的ML分类器进行对比实验,分析N-gram、GloVe和基于图像的恶意软件分类方法的能力。深入分析了GloVe对恶意软件静态分析产生负面影响的原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信