A Tabu Search Meta-Heuristic for Image Semi-Supervised Classification

M. Zennaki, A. Ech-Cherif, Jean-Charles Lamirel
{"title":"A Tabu Search Meta-Heuristic for Image Semi-Supervised Classification","authors":"M. Zennaki, A. Ech-Cherif, Jean-Charles Lamirel","doi":"10.1109/GMAI.2006.4","DOIUrl":null,"url":null,"abstract":"We investigate the utility of tabu search (TS) meta-heuristics for semi-supervised image classification tasks. The proposed heuristic solves the integer programming transductive support vector machine (MIP-TSVM) formulation considered. Preliminary results, with a linear kernel show that our TS implementation can effectively find optimal global solutions for TSVM with relatively large problem dimensions and is competitive, in terms of generalization performance, with transductive SVMlight package on LIBSVM benchmarks. However on corel image database, TSVMlight demonstrates superior performance. As a result, the usefulness of such MIP-TSVM formulation may be application dependant","PeriodicalId":438098,"journal":{"name":"Geometric Modeling and Imaging--New Trends (GMAI'06)","volume":"439 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometric Modeling and Imaging--New Trends (GMAI'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GMAI.2006.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We investigate the utility of tabu search (TS) meta-heuristics for semi-supervised image classification tasks. The proposed heuristic solves the integer programming transductive support vector machine (MIP-TSVM) formulation considered. Preliminary results, with a linear kernel show that our TS implementation can effectively find optimal global solutions for TSVM with relatively large problem dimensions and is competitive, in terms of generalization performance, with transductive SVMlight package on LIBSVM benchmarks. However on corel image database, TSVMlight demonstrates superior performance. As a result, the usefulness of such MIP-TSVM formulation may be application dependant
基于禁忌搜索的图像半监督分类元启发式算法
我们研究禁忌搜索(TS)元启发式在半监督图像分类任务中的效用。提出的启发式算法解决了整数规划转换支持向量机(MIP-TSVM)公式。使用线性核的初步结果表明,我们的TS实现可以有效地为具有较大问题维数的TSVM找到最优全局解,并且在LIBSVM基准测试中,就泛化性能而言,与换能型SVMlight包具有竞争力。但在corel图像数据库上,TSVMlight表现出了优越的性能。因此,这种MIP-TSVM公式的有效性可能取决于应用程序
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信