Unsupervised Contextual Keyword Relevance Learning and Measurement using PLSA

S. Sudarsun, Dalou Kalaivendhan, M. Venkateswarlu
{"title":"Unsupervised Contextual Keyword Relevance Learning and Measurement using PLSA","authors":"S. Sudarsun, Dalou Kalaivendhan, M. Venkateswarlu","doi":"10.1109/INDCON.2006.302787","DOIUrl":null,"url":null,"abstract":"In this paper, we have developed a probabilistic approach using PLSA for the discovery and analysis of contextual keyword relevance based on the distribution of keywords across a training text corpus. We have shown experimentally, the flexibility of this approach in classifying keywords into different domains based on their context. We have developed a prototype system that allows us to project keyword queries on the loaded PLSA model and returns keywords that are closely correlated. The keyword query is vectorized using the PLSA model in the reduce aspect space and correlation is derived by calculating a dot product. We also discuss the parameters that control PLSA performance including a) number of aspects, b) number of EM iterations c) weighting functions on TDM (pre-weighting). We have estimated the quality through computation of precision-recall scores. We have presented our experiments on PLSA application towards document classification","PeriodicalId":122715,"journal":{"name":"2006 Annual IEEE India Conference","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 Annual IEEE India Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDCON.2006.302787","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we have developed a probabilistic approach using PLSA for the discovery and analysis of contextual keyword relevance based on the distribution of keywords across a training text corpus. We have shown experimentally, the flexibility of this approach in classifying keywords into different domains based on their context. We have developed a prototype system that allows us to project keyword queries on the loaded PLSA model and returns keywords that are closely correlated. The keyword query is vectorized using the PLSA model in the reduce aspect space and correlation is derived by calculating a dot product. We also discuss the parameters that control PLSA performance including a) number of aspects, b) number of EM iterations c) weighting functions on TDM (pre-weighting). We have estimated the quality through computation of precision-recall scores. We have presented our experiments on PLSA application towards document classification
基于PLSA的无监督语境关键词相关学习与测量
在本文中,我们开发了一种基于训练文本语料库中关键字分布的概率方法,使用PLSA来发现和分析上下文关键字相关性。我们已经通过实验证明,这种方法在根据上下文将关键字分类到不同领域方面具有灵活性。我们已经开发了一个原型系统,使我们能够在加载的PLSA模型上投影关键字查询,并返回密切相关的关键字。在降维空间中使用PLSA模型对关键词查询进行矢量化,并通过计算点积来推导相关性。我们还讨论了控制PLSA性能的参数,包括a)方面数量,b) EM迭代次数c) TDM上的加权函数(预加权)。我们通过计算查准率和查全率来估计质量。我们介绍了PLSA在文档分类中的应用实验
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信