{"title":"GHz Class Low-Power Flash ADC for Broadband Communications","authors":"J. Sexton, T. Tauqeer, M. Mohiuddin, M. Missous","doi":"10.1109/ASDAM.2008.4743326","DOIUrl":null,"url":null,"abstract":"A low-power (~400 mW) high-speed (2-4 GS/s) 4-bit analogue-to-digital converter (ADC) based on InP/InGaAs heterojunction bipolar transistors (HBT) has been designed and simulated. The technology utilised two novel developments. Firstly stoichiometric conditions permitted growth at a relatively low temperature (420degC) while conserving extremely high-quality materials. Secondly dimeric phosphorus generated from a gallium phosphide (GaP) decomposition source has lead to excellent device properties. The complete ADC shows state-of-the-art performance and includes an interface for connection to standard digital signal processing (DSP) systems whilst dissipating only 400 mW.","PeriodicalId":306699,"journal":{"name":"2008 International Conference on Advanced Semiconductor Devices and Microsystems","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Conference on Advanced Semiconductor Devices and Microsystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASDAM.2008.4743326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
A low-power (~400 mW) high-speed (2-4 GS/s) 4-bit analogue-to-digital converter (ADC) based on InP/InGaAs heterojunction bipolar transistors (HBT) has been designed and simulated. The technology utilised two novel developments. Firstly stoichiometric conditions permitted growth at a relatively low temperature (420degC) while conserving extremely high-quality materials. Secondly dimeric phosphorus generated from a gallium phosphide (GaP) decomposition source has lead to excellent device properties. The complete ADC shows state-of-the-art performance and includes an interface for connection to standard digital signal processing (DSP) systems whilst dissipating only 400 mW.