Velocity Measurement by a Vision Sensor

S. Malki, G. DeepaK., V. Mohanna, M. Ringhofer, L. Spaanenburg
{"title":"Velocity Measurement by a Vision Sensor","authors":"S. Malki, G. DeepaK., V. Mohanna, M. Ringhofer, L. Spaanenburg","doi":"10.1109/CIMSA.2006.250771","DOIUrl":null,"url":null,"abstract":"Vision sensors are of increasing interest for non-intrusive, remote measurements in industrial as well as consumer products. Their operation is based on intelligent techniques for image understanding, followed by robust quantification of the detected phenomenon. A well-known application area is movement detection and isolation. This paper discusses how movement can be detected and quantified by means of a single cellular neural network, implemented as a network-on-chip and realized on a field-programmable gate-array. The final prototype can isolate a moving object and measure its velocity at a speed of 250 frames per second","PeriodicalId":431033,"journal":{"name":"2006 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications","volume":"496 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIMSA.2006.250771","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Vision sensors are of increasing interest for non-intrusive, remote measurements in industrial as well as consumer products. Their operation is based on intelligent techniques for image understanding, followed by robust quantification of the detected phenomenon. A well-known application area is movement detection and isolation. This paper discusses how movement can be detected and quantified by means of a single cellular neural network, implemented as a network-on-chip and realized on a field-programmable gate-array. The final prototype can isolate a moving object and measure its velocity at a speed of 250 frames per second
用视觉传感器测量速度
视觉传感器对于工业和消费产品的非侵入式远程测量越来越感兴趣。它们的操作基于图像理解的智能技术,然后对检测到的现象进行鲁棒量化。一个众所周知的应用领域是运动检测和隔离。本文讨论了如何通过单个细胞神经网络来检测和量化运动,作为片上网络实现,并在现场可编程门阵列上实现。最终的原型机可以隔离运动物体,并以每秒250帧的速度测量其速度
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信