Analisis Pemasaran Bisnis dengan Data Science : Segmentasi Kepribadian Pelanggan berdasarkan Algoritma K-Means Clustering

M. Harahap, Yusniar Lubis, Zakarias Situmorang
{"title":"Analisis Pemasaran Bisnis dengan Data Science : Segmentasi Kepribadian Pelanggan berdasarkan Algoritma K-Means Clustering","authors":"M. Harahap, Yusniar Lubis, Zakarias Situmorang","doi":"10.47709/dsi.v1i2.1348","DOIUrl":null,"url":null,"abstract":"Dalam makalah ini kami menyajikan analisis kepribadian pelanggan dalam membantu bisnis untuk memodifikasi produknya berdasarkan target pelanggan dari berbagai jenis segmen pelanggan sehingga menemukan pelanggan yang potensial, membuat pemasaran agar lebih efektif, melihat tren dalam perilaku pembelian pelanggan dan membuat penawaran produk yang relevan kepada pelanggan. Kerangka kerja Data Science (ilmu data) dengan metodologi CRIS-DM diterapkan untuk memberikan pemahaman bisnis, pemahaman data, analisis data dan pemodelan. Pada tahapan pemodelan diusulkan Principal component analysis (PCA) untuk pengurangan dimensial fitur, kemudian algoritma K-Means untuk segmentasi pelanggan dengan menggunakan metode ellow dan silhouette yang menghasilkan nilai k=4 yang paling optimal. Terakhir, hasil 4 cluster di analisis berdasarkan proposi, belanja, pendidikan dan tingkat keberhasilan kampanye yang disajikan secara visualisasi.","PeriodicalId":155875,"journal":{"name":"Data Sciences Indonesia (DSI)","volume":"132 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Sciences Indonesia (DSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47709/dsi.v1i2.1348","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Dalam makalah ini kami menyajikan analisis kepribadian pelanggan dalam membantu bisnis untuk memodifikasi produknya berdasarkan target pelanggan dari berbagai jenis segmen pelanggan sehingga menemukan pelanggan yang potensial, membuat pemasaran agar lebih efektif, melihat tren dalam perilaku pembelian pelanggan dan membuat penawaran produk yang relevan kepada pelanggan. Kerangka kerja Data Science (ilmu data) dengan metodologi CRIS-DM diterapkan untuk memberikan pemahaman bisnis, pemahaman data, analisis data dan pemodelan. Pada tahapan pemodelan diusulkan Principal component analysis (PCA) untuk pengurangan dimensial fitur, kemudian algoritma K-Means untuk segmentasi pelanggan dengan menggunakan metode ellow dan silhouette yang menghasilkan nilai k=4 yang paling optimal. Terakhir, hasil 4 cluster di analisis berdasarkan proposi, belanja, pendidikan dan tingkat keberhasilan kampanye yang disajikan secara visualisasi.
利用数据科学进行商业营销分析:基于 K-Means 聚类算法的客户个性细分
在本文中,我们对客户个性进行分析,帮助企业根据不同类型的客户类别修改产品,从而找到潜在客户,使营销更有效,了解客户的购买行为趋势,并向客户提供相关产品。用于技术科学的数据框架以提供商业理解、数据理解、数据分析和建模。在拟议中的模型分析阶段,主要是基维分析,然后是k -意指通过ellow方法和silhouette来分割客户,从而产生最优值k=4。最后,4个集群的结果是基于建议、购物、教育和可视化竞选的成功程度进行分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信