Yan-Jie Lin, Hong-Jie Dai, You-Chen Zhang, Chung-Yang Wu, Yu-Cheng Chang, Pin-Jou Lu, Chih-Jen Huang, Yu-Tsang Wang, H. Hsieh, K. Chao, T. Liu, I. Chang, Yi-Hsin Connie Yang, Ti-Hao Wang, Ko-Jiunn Liu, Li‐Tzong Chen, Sheau-Fang Yang
{"title":"Cancer Registry Information Extraction via Transfer Learning","authors":"Yan-Jie Lin, Hong-Jie Dai, You-Chen Zhang, Chung-Yang Wu, Yu-Cheng Chang, Pin-Jou Lu, Chih-Jen Huang, Yu-Tsang Wang, H. Hsieh, K. Chao, T. Liu, I. Chang, Yi-Hsin Connie Yang, Ti-Hao Wang, Ko-Jiunn Liu, Li‐Tzong Chen, Sheau-Fang Yang","doi":"10.18653/v1/2020.clinicalnlp-1.22","DOIUrl":null,"url":null,"abstract":"A cancer registry is a critical and massive database for which various types of domain knowledge are needed and whose maintenance requires labor-intensive data curation. In order to facilitate the curation process for building a high-quality and integrated cancer registry database, we compiled a cross-hospital corpus and applied neural network methods to develop a natural language processing system for extracting cancer registry variables buried in unstructured pathology reports. The performance of the developed networks was compared with various baselines using standard micro-precision, recall and F-measure. Furthermore, we conducted experiments to study the feasibility of applying transfer learning to rapidly develop a well-performing system for processing reports from different sources that might be presented in different writing styles and formats. The results demonstrate that the transfer learning method enables us to develop a satisfactory system for a new hospital with only a few annotations and suggest more opportunities to reduce the burden of cancer registry curation.","PeriodicalId":216954,"journal":{"name":"Clinical Natural Language Processing Workshop","volume":"150 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Natural Language Processing Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2020.clinicalnlp-1.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
A cancer registry is a critical and massive database for which various types of domain knowledge are needed and whose maintenance requires labor-intensive data curation. In order to facilitate the curation process for building a high-quality and integrated cancer registry database, we compiled a cross-hospital corpus and applied neural network methods to develop a natural language processing system for extracting cancer registry variables buried in unstructured pathology reports. The performance of the developed networks was compared with various baselines using standard micro-precision, recall and F-measure. Furthermore, we conducted experiments to study the feasibility of applying transfer learning to rapidly develop a well-performing system for processing reports from different sources that might be presented in different writing styles and formats. The results demonstrate that the transfer learning method enables us to develop a satisfactory system for a new hospital with only a few annotations and suggest more opportunities to reduce the burden of cancer registry curation.