Steganalytic attack for an adaptive steganography using support vector machine

B. Yamini, R. Sabitha
{"title":"Steganalytic attack for an adaptive steganography using support vector machine","authors":"B. Yamini, R. Sabitha","doi":"10.1109/INTERACT.2010.5706194","DOIUrl":null,"url":null,"abstract":"Steganographic techniques have been used for centuries. Using steganography, secret messages can be embedded inside a piece of unsuspicious information and sending it without anyone's knowledge about the existence of the secret message. Steganalysis is the mechanism of detecting the presence of hidden information in the stego media and it can lead to the prevention of disastrous security incidents. Steganalysis can be a targeted steganalysis or a blind steganalysis. In the existing method, adaptive steganography algorithm is used to provide larger embedding capacity based on image contrast. In this paper, a new technique is implemented to calculate the length of embedded message using Support Vector Machine to classify the cover and stego images with extremely low computational cost of comparing the bit positions.","PeriodicalId":201931,"journal":{"name":"INTERACT-2010","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"INTERACT-2010","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INTERACT.2010.5706194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Steganographic techniques have been used for centuries. Using steganography, secret messages can be embedded inside a piece of unsuspicious information and sending it without anyone's knowledge about the existence of the secret message. Steganalysis is the mechanism of detecting the presence of hidden information in the stego media and it can lead to the prevention of disastrous security incidents. Steganalysis can be a targeted steganalysis or a blind steganalysis. In the existing method, adaptive steganography algorithm is used to provide larger embedding capacity based on image contrast. In this paper, a new technique is implemented to calculate the length of embedded message using Support Vector Machine to classify the cover and stego images with extremely low computational cost of comparing the bit positions.
基于支持向量机的自适应隐写攻击
隐写技术已经使用了几个世纪。使用隐写术,秘密信息可以嵌入到一段不可疑的信息中,并在任何人都不知道秘密信息存在的情况下发送它。隐写分析是一种检测隐写介质中是否存在隐藏信息的机制,它可以防止灾难性的安全事件。隐写分析可以是目标隐写分析或盲隐写分析。在现有方法中,采用基于图像对比度的自适应隐写算法提供更大的嵌入容量。本文实现了一种利用支持向量机计算嵌入信息长度的新技术,以极低的比特位置比较计算成本对覆盖和隐写图像进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信