Fusing odometry and sparse UWB radar measurements for indoor slam

T. Deißler, J. Thielecke
{"title":"Fusing odometry and sparse UWB radar measurements for indoor slam","authors":"T. Deißler, J. Thielecke","doi":"10.1109/SDF.2013.6698259","DOIUrl":null,"url":null,"abstract":"For security applications and in situations where optical sensors are not working, ultra-wideband (UWB) radar is an alternative technology for localization, mapping and object recognition. This paper presents an approach for solving the simultaneous localization and mapping (SLAM) problem for an autonomous robot with a small UWB radar array. Feature-based mapping in conjunction with an underlying state space model enables the reconstruction of the room with accuracy up to 10 cm. Two different ways of dealing with the data association problem - the task of sorting the measured time-of-flight values - are presented. Data fusion with odometry information is proposed to reduce the number of measurement steps. Experimental results with an autonomous robot show the feasibility of the concept.","PeriodicalId":228075,"journal":{"name":"2013 Workshop on Sensor Data Fusion: Trends, Solutions, Applications (SDF)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Workshop on Sensor Data Fusion: Trends, Solutions, Applications (SDF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SDF.2013.6698259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

For security applications and in situations where optical sensors are not working, ultra-wideband (UWB) radar is an alternative technology for localization, mapping and object recognition. This paper presents an approach for solving the simultaneous localization and mapping (SLAM) problem for an autonomous robot with a small UWB radar array. Feature-based mapping in conjunction with an underlying state space model enables the reconstruction of the room with accuracy up to 10 cm. Two different ways of dealing with the data association problem - the task of sorting the measured time-of-flight values - are presented. Data fusion with odometry information is proposed to reduce the number of measurement steps. Experimental results with an autonomous robot show the feasibility of the concept.
融合里程计和稀疏超宽带雷达测量室内撞击
对于安全应用和光学传感器无法工作的情况,超宽带(UWB)雷达是定位、映射和物体识别的替代技术。提出了一种基于小型超宽带雷达阵列的自主机器人同时定位与测绘问题的解决方法。基于特征的映射与底层状态空间模型相结合,可以以高达10厘米的精度重建房间。提出了两种不同的处理数据关联问题的方法,即对测量的飞行时间值进行排序。为了减少测量步骤,提出了与里程计信息融合的方法。自主机器人的实验结果表明了该概念的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信