On the Use of Consumer Tweets to Assess the Risk of Misstated Revenue in Consumer-Facing Industries: Evidence from Analytical Procedures

Andrea M. Rozario, M. Vasarhelyi, T. Wang
{"title":"On the Use of Consumer Tweets to Assess the Risk of Misstated Revenue in Consumer-Facing Industries: Evidence from Analytical Procedures","authors":"Andrea M. Rozario, M. Vasarhelyi, T. Wang","doi":"10.2308/ajpt-2020-078","DOIUrl":null,"url":null,"abstract":"We examine whether consumer-generated tweets about purchases (interest) and sentiment are useful in assessing the risk of misstated revenue in the planning stage of the audit, as reflected in improvements to analytical procedures, for firms in consumer-facing industries. We obtain consumer-generated tweeting activities from 2012 to 2017 for 76 companies in 20 consumer-facing industries from a data provider. We find that relative to a benchmark model, Twitter consumer interest, but not consumer sentiment, improves the prediction and error detection ability of analytical procedures for most firms in consumer-facing industries. Our findings are robust to different model settings. In additional tests, we observe that the effect of Twitter consumer interest is more pronounced in smaller industries and that it remains useful in analytical procedures when compared to firms’ advertising and employee headcount. Together, our results suggest that this new source of information improves auditors’ assessments of the risk of misstated revenue.","PeriodicalId":330359,"journal":{"name":"Auditing: A Journal of Practice & Theory","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Auditing: A Journal of Practice & Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2308/ajpt-2020-078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We examine whether consumer-generated tweets about purchases (interest) and sentiment are useful in assessing the risk of misstated revenue in the planning stage of the audit, as reflected in improvements to analytical procedures, for firms in consumer-facing industries. We obtain consumer-generated tweeting activities from 2012 to 2017 for 76 companies in 20 consumer-facing industries from a data provider. We find that relative to a benchmark model, Twitter consumer interest, but not consumer sentiment, improves the prediction and error detection ability of analytical procedures for most firms in consumer-facing industries. Our findings are robust to different model settings. In additional tests, we observe that the effect of Twitter consumer interest is more pronounced in smaller industries and that it remains useful in analytical procedures when compared to firms’ advertising and employee headcount. Together, our results suggest that this new source of information improves auditors’ assessments of the risk of misstated revenue.
利用消费者推文评估面向消费者行业收入错报风险:来自分析程序的证据
我们研究消费者生成的关于购买(兴趣)和情绪的推文是否有助于评估审计规划阶段误报收入的风险,正如对面向消费者行业的公司分析程序的改进所反映的那样。我们从一家数据提供商处获取2012年至2017年20个面向消费者行业的76家公司的消费者生成的推文活动。我们发现,相对于基准模型,Twitter消费者兴趣,而不是消费者情绪,提高了面向消费者行业的大多数公司的分析程序的预测和错误检测能力。我们的发现对不同的模型设置都是稳健的。在额外的测试中,我们观察到Twitter消费者兴趣的影响在较小的行业中更为明显,并且与公司的广告和员工人数相比,它在分析过程中仍然有用。总之,我们的研究结果表明,这种新的信息来源提高了审计师对错报收入风险的评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信