The universal solution of equations of balance of the transversely isotropic plate with initial stresses with slippery strength of the flat borders

O. Strigina, I. Khoma
{"title":"The universal solution of equations of balance of the transversely isotropic plate with initial stresses with slippery strength of the flat borders","authors":"O. Strigina, I. Khoma","doi":"10.15414/meraa.2019.05.02.61-68","DOIUrl":null,"url":null,"abstract":"The topic of this paper is concentrated on the problem of mechanics of a deformed solid. In the first part we solved equilibrium equations of a transversal isotropic plate with initial stresses under mixed conditions on planar faces where we applied the method of decomposition of the sought functions into Fourier series by Legendre polynomials. Normal displacement and tangent voltage were assumed to be zero. In the second part we proposed a method of representing the general analytical solution of the obtained equilibrium equations.","PeriodicalId":356304,"journal":{"name":"Mathematics in Education, Research and Applications","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics in Education, Research and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15414/meraa.2019.05.02.61-68","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The topic of this paper is concentrated on the problem of mechanics of a deformed solid. In the first part we solved equilibrium equations of a transversal isotropic plate with initial stresses under mixed conditions on planar faces where we applied the method of decomposition of the sought functions into Fourier series by Legendre polynomials. Normal displacement and tangent voltage were assumed to be zero. In the second part we proposed a method of representing the general analytical solution of the obtained equilibrium equations.
横向各向同性板的平衡方程的通解,具有光滑边界的初始应力
本文主要研究变形固体的力学问题。在第一部分中,我们用勒让德多项式将求函数分解成傅里叶级数的方法,求解了平面上具有初始应力的横向各向同性板在混合条件下的平衡方程。假设法向位移和正切电压为零。在第二部分,我们提出了一种表示得到的平衡方程的一般解析解的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信