Edge Computing in 5G for Mobile AR/VR Data Prediction and Slicing Model

P. J. Kumar, M. K. Kanth, B. Nikhil, D. H. Vardhana, Vithya Ganesan
{"title":"Edge Computing in 5G for Mobile AR/VR Data Prediction and Slicing Model","authors":"P. J. Kumar, M. K. Kanth, B. Nikhil, D. H. Vardhana, Vithya Ganesan","doi":"10.1109/WCONF58270.2023.10235144","DOIUrl":null,"url":null,"abstract":"To reduce computational connectivity issues, AR/VR data necessitates vast computational capabilities, tremendous transmission bandwidth, and ultra-low latency. AR/VR data can process data at the Mobile Edge computation (MEC) reducing the latencies in crucial decisions. Data slicing and edge computing are envisioned as critical enabler technologies for prioritizing data download and upload. Edge computing provides storage and processing resources at the network’s edge. The devices mimic a framework for data prediction as well as a slicing model to slice AR/VR data streaming. AR/VR slicing model requires uploading and downloading streams speed limit, connectivity time, bandwidth, and user pattern as its parameters to predict data slicing model in edge computing to improvise the network utilization. MEC uses ML in 3 ways.(1) ML-based task offloading techniques; (2) ML-based task scheduling methods; and (3) ML-based joint resource allocation methods.","PeriodicalId":202864,"journal":{"name":"2023 World Conference on Communication & Computing (WCONF)","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 World Conference on Communication & Computing (WCONF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCONF58270.2023.10235144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To reduce computational connectivity issues, AR/VR data necessitates vast computational capabilities, tremendous transmission bandwidth, and ultra-low latency. AR/VR data can process data at the Mobile Edge computation (MEC) reducing the latencies in crucial decisions. Data slicing and edge computing are envisioned as critical enabler technologies for prioritizing data download and upload. Edge computing provides storage and processing resources at the network’s edge. The devices mimic a framework for data prediction as well as a slicing model to slice AR/VR data streaming. AR/VR slicing model requires uploading and downloading streams speed limit, connectivity time, bandwidth, and user pattern as its parameters to predict data slicing model in edge computing to improvise the network utilization. MEC uses ML in 3 ways.(1) ML-based task offloading techniques; (2) ML-based task scheduling methods; and (3) ML-based joint resource allocation methods.
5G边缘计算用于移动AR/VR数据预测和切片模型
为了减少计算连接问题,AR/VR数据需要巨大的计算能力、巨大的传输带宽和超低延迟。AR/VR数据可以在移动边缘计算(MEC)处理数据,减少关键决策的延迟。数据切片和边缘计算被设想为优先考虑数据下载和上传的关键使能技术。边缘计算在网络边缘提供存储和处理资源。这些设备模拟了一个数据预测框架,以及一个切片模型来切片AR/VR数据流。AR/VR切片模型需要上传和下载流速度限制、连接时间、带宽和用户模式作为参数来预测边缘计算中的数据切片模型,以提高网络利用率。MEC以三种方式使用机器学习:(1)基于机器学习的任务卸载技术;(2)基于机器学习的任务调度方法;(3)基于机器学习的联合资源分配方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信