QPSK error vector magnitude demodulation with RBF neural network in Rayleigh fading channels

S. Lerkvaranyu, Y. Miyanaga
{"title":"QPSK error vector magnitude demodulation with RBF neural network in Rayleigh fading channels","authors":"S. Lerkvaranyu, Y. Miyanaga","doi":"10.1109/ISCIT.2004.1413832","DOIUrl":null,"url":null,"abstract":"This work proposes a method to enhance the demodulation of QPSK error vector magnitude (EVM) in a direct conversion receiver (DCR). The proposed method is a radial basis function (RBF) neural network, which is used to learn the characteristics of signal constellation. The hybrid learning method is used to train the RBF network. The hidden layer is trained by the hard k means clustering and the supervised learning is used to train the output layer with given input-output pairs. This study is worked in a Rayleigh fading channel.","PeriodicalId":237047,"journal":{"name":"IEEE International Symposium on Communications and Information Technology, 2004. ISCIT 2004.","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Symposium on Communications and Information Technology, 2004. ISCIT 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCIT.2004.1413832","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work proposes a method to enhance the demodulation of QPSK error vector magnitude (EVM) in a direct conversion receiver (DCR). The proposed method is a radial basis function (RBF) neural network, which is used to learn the characteristics of signal constellation. The hybrid learning method is used to train the RBF network. The hidden layer is trained by the hard k means clustering and the supervised learning is used to train the output layer with given input-output pairs. This study is worked in a Rayleigh fading channel.
基于RBF神经网络的瑞利衰落信道QPSK误差矢量幅度解调
本文提出了一种在直接转换接收机(DCR)中增强QPSK误差矢量幅度(EVM)解调的方法。该方法采用径向基函数(RBF)神经网络学习信号星座的特征。采用混合学习方法对RBF网络进行训练。隐层采用硬k均值聚类训练,输出层采用给定输入输出对的监督学习训练。本研究是在瑞利衰落信道中进行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信