Yingmin Li, D. Brooks, Zhigang Hu, K. Skadron, P. Bose
{"title":"Understanding the energy efficiency of simultaneous multithreading","authors":"Yingmin Li, D. Brooks, Zhigang Hu, K. Skadron, P. Bose","doi":"10.1145/1013235.1013251","DOIUrl":null,"url":null,"abstract":"Simultaneous multithreading (SMT) has proven to be an effective method of increasing the performance of microprocessors by extracting additional instruction-level parallelism from multiple threads. In current microprocessor designs, power-efficiency is of critical importance, and we present modeling extensions to an architectural simulator to allow us to study the power-performance efficiency of SMT. After a thorough design space exploration we find that SMT can provide a performance speedup of nearly 20% for a wide range of applications with a power overhead of roughly 24%. Thus, SMT can provide a substantial benefit for energy-efficiency metrics such as ED/sup 2/. We also explore the underlying reasons for the power uplift, analyze the impact of leakage-sensitive process technologies, and discuss our model validation strategy.","PeriodicalId":120002,"journal":{"name":"Proceedings of the 2004 International Symposium on Low Power Electronics and Design (IEEE Cat. No.04TH8758)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2004-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"54","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2004 International Symposium on Low Power Electronics and Design (IEEE Cat. No.04TH8758)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1013235.1013251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 54
Abstract
Simultaneous multithreading (SMT) has proven to be an effective method of increasing the performance of microprocessors by extracting additional instruction-level parallelism from multiple threads. In current microprocessor designs, power-efficiency is of critical importance, and we present modeling extensions to an architectural simulator to allow us to study the power-performance efficiency of SMT. After a thorough design space exploration we find that SMT can provide a performance speedup of nearly 20% for a wide range of applications with a power overhead of roughly 24%. Thus, SMT can provide a substantial benefit for energy-efficiency metrics such as ED/sup 2/. We also explore the underlying reasons for the power uplift, analyze the impact of leakage-sensitive process technologies, and discuss our model validation strategy.