C. Huang, Kenny Christainsen, S. Nabokin, Rafik Mirzayantz, J. Allum, Andrew Chen, L. Lam, M. McPartlin, M. Doherty, Bill Vaillancourt
{"title":"A highly integrated single chip 5–6 GHz front-end IC based on SiGe BiCMOS that enhances 802.11ac WLAN radio front-end designs","authors":"C. Huang, Kenny Christainsen, S. Nabokin, Rafik Mirzayantz, J. Allum, Andrew Chen, L. Lam, M. McPartlin, M. Doherty, Bill Vaillancourt","doi":"10.1109/RFIC.2015.7337746","DOIUrl":null,"url":null,"abstract":"A highly integrated 4.9-5.9 GHz single chip front-end IC (FEIC) is presented, which is based on SiGe BiCMOS, realized in a 1.6 mm2 chip area and in an ultra-compact 1.7 × 2.0 × 0.33 mm3 package. The Tx chain has >30 dB gain and meets -40 dB DEVM up to Pout of 15 dBm and -35 dB DEVM up to Pout of 17 dBm with a 3.3 V supply, insensitive to modulation bandwidths and duty cycle. The ultra-low back-off DEVM enables the emerging 1024-QAM applications. The integrated log detector enhances the dynamic range for the transmit power control. The Rx chain features <;2.8 dB NF and 15 dB gain with 3 dBm IIP3 and 10 dB bypass attenuator with 23 dBm IIP3. All the unique features enhance the front-end circuit designs of complex radios based on the 802.11ac standard.","PeriodicalId":121490,"journal":{"name":"2015 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RFIC.2015.7337746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15
Abstract
A highly integrated 4.9-5.9 GHz single chip front-end IC (FEIC) is presented, which is based on SiGe BiCMOS, realized in a 1.6 mm2 chip area and in an ultra-compact 1.7 × 2.0 × 0.33 mm3 package. The Tx chain has >30 dB gain and meets -40 dB DEVM up to Pout of 15 dBm and -35 dB DEVM up to Pout of 17 dBm with a 3.3 V supply, insensitive to modulation bandwidths and duty cycle. The ultra-low back-off DEVM enables the emerging 1024-QAM applications. The integrated log detector enhances the dynamic range for the transmit power control. The Rx chain features <;2.8 dB NF and 15 dB gain with 3 dBm IIP3 and 10 dB bypass attenuator with 23 dBm IIP3. All the unique features enhance the front-end circuit designs of complex radios based on the 802.11ac standard.