Secrecy capacity region of the Gaussian multi-receiver wiretap channel

E. Ekrem, S. Ulukus
{"title":"Secrecy capacity region of the Gaussian multi-receiver wiretap channel","authors":"E. Ekrem, S. Ulukus","doi":"10.1109/ISIT.2009.5205959","DOIUrl":null,"url":null,"abstract":"We consider the Gaussian multi-receiver wiretap channel and evaluate its secrecy capacity region. This evaluation requires the identification of underlying auxiliary random variables. For this purpose, we first visit the converse proof of the scalar Gaussian broadcast channel, and show that this proof cannot be extended to this secrecy context. The failure of this extension comes from the insufficiency of the entropy-power inequality to resolve the ambiguity regarding the auxiliary random variables. Instead, we provide two converse proofs. The first one uses the alternative representation of the mutual information as an integration of the minimum-mean-square-error (MMSE) along with the properties of the MMSE. The second one uses the relationship between the differential entropy and the Fisher information via the de Bruin identity along with the properties of the Fisher information.","PeriodicalId":412925,"journal":{"name":"2009 IEEE International Symposium on Information Theory","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2009.5205959","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

We consider the Gaussian multi-receiver wiretap channel and evaluate its secrecy capacity region. This evaluation requires the identification of underlying auxiliary random variables. For this purpose, we first visit the converse proof of the scalar Gaussian broadcast channel, and show that this proof cannot be extended to this secrecy context. The failure of this extension comes from the insufficiency of the entropy-power inequality to resolve the ambiguity regarding the auxiliary random variables. Instead, we provide two converse proofs. The first one uses the alternative representation of the mutual information as an integration of the minimum-mean-square-error (MMSE) along with the properties of the MMSE. The second one uses the relationship between the differential entropy and the Fisher information via the de Bruin identity along with the properties of the Fisher information.
高斯多接收机窃听信道的保密容量区域
我们考虑了高斯多接收机窃听信道,并对其保密容量区域进行了评估。这种评估需要识别潜在的辅助随机变量。为此,我们首先访问标量高斯广播信道的反向证明,并表明该证明不能扩展到该保密上下文。这种推广的失败是由于熵功率不等式不能解决辅助随机变量的模糊性。相反,我们提供了两个相反的证明。第一种方法使用互信息的替代表示作为最小均方误差(MMSE)和MMSE属性的集成。第二个是利用微分熵和费雪信息之间的关系通过德布鲁因恒等式以及费雪信息的性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信