{"title":"Parallel Multiscale Gauss-Newton-Krylov Methods for Inverse Wave Propagation","authors":"V. Akçelik, G. Biros, O. Ghattas","doi":"10.5555/762761.762827","DOIUrl":null,"url":null,"abstract":"One of the outstanding challenges of computational science and engineering is large-scale nonlinear parameter estimation of systems governed by partial differential equations. These are known as inverse problems, in contradistinction to the forward problems that usually characterize large-scale simulation. Inverse problems are significantly more difficult to solve than forward problems, due to ill-posedness, large dense ill-conditioned operators, multiple minima, space-time coupling, and the need to solve the forward problem repeatedly. We present a parallel algorithm for inverse problems governed by time-dependent PDEs, and scalability results for an inverse wave propagation problem of determining the material field of an acoustic medium. The difficulties mentioned above are addressed through a combination of total variation regularization, preconditioned matrix-free Gauss-Newton-Krylov iteration, algorithmic checkpointing, and multiscale continuation. We are able to solve a synthetic inverse wave propagation problem though a pelvic bone geometry involving 2.1 million inversion parameters in 3 hours on 256 processors of the Terascale Computing System at the Pittsburgh Supercomputing Center.","PeriodicalId":302800,"journal":{"name":"ACM/IEEE SC 2002 Conference (SC'02)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"163","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM/IEEE SC 2002 Conference (SC'02)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5555/762761.762827","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 163
Abstract
One of the outstanding challenges of computational science and engineering is large-scale nonlinear parameter estimation of systems governed by partial differential equations. These are known as inverse problems, in contradistinction to the forward problems that usually characterize large-scale simulation. Inverse problems are significantly more difficult to solve than forward problems, due to ill-posedness, large dense ill-conditioned operators, multiple minima, space-time coupling, and the need to solve the forward problem repeatedly. We present a parallel algorithm for inverse problems governed by time-dependent PDEs, and scalability results for an inverse wave propagation problem of determining the material field of an acoustic medium. The difficulties mentioned above are addressed through a combination of total variation regularization, preconditioned matrix-free Gauss-Newton-Krylov iteration, algorithmic checkpointing, and multiscale continuation. We are able to solve a synthetic inverse wave propagation problem though a pelvic bone geometry involving 2.1 million inversion parameters in 3 hours on 256 processors of the Terascale Computing System at the Pittsburgh Supercomputing Center.