Hole mobility enhancement in uniaxially strained SiGe FINFETs: Analysis and prospects

R. Bijesh, I. Ok, M. Baykan, C. Hobbs, P. Majhi, R. Jammy, S. Datta
{"title":"Hole mobility enhancement in uniaxially strained SiGe FINFETs: Analysis and prospects","authors":"R. Bijesh, I. Ok, M. Baykan, C. Hobbs, P. Majhi, R. Jammy, S. Datta","doi":"10.1109/DRC.2011.5994513","DOIUrl":null,"url":null,"abstract":"Experimental and theoretical hole mobility study in uniaxially strained (110)<110> Si0.75Ge0.25 pFINFETs shows that alloy scattering contributes only a small fraction of the overall mobility at 300K but plays a bigger role limiting 77K hole mobility. Increasing the Ge content to 50% increases the strain level. However, the extent of strain relaxation depends on the length of the fin. Fig. 10 shows the measured and projected hole mobility for SiGe FINFETs with 25% and 50% Ge mole fraction. Higher strain induced reduction of effective mass compensates for the increased interface charge density, Dit, in SSGOI0.5 pFINFET and alloy disorder and results in 157% increase in the hole mobility observed at Ns=1×1013 cm−2 and T=300K. Fig. 11 benchmarks the hole mobility in SSGOI0.25 and SSGOI0.5 pFINFETs as a function of electrical oxide thickness (TOXE) and shows its advantage over relaxed Ge channel MOSFETs. However strain relaxation for shorter length fins need to be addressed using careful layout techniques. High mobility combined with excellent short channel behavior make these devices a promising candidate for future technology node.","PeriodicalId":107059,"journal":{"name":"69th Device Research Conference","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"69th Device Research Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC.2011.5994513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Experimental and theoretical hole mobility study in uniaxially strained (110)<110> Si0.75Ge0.25 pFINFETs shows that alloy scattering contributes only a small fraction of the overall mobility at 300K but plays a bigger role limiting 77K hole mobility. Increasing the Ge content to 50% increases the strain level. However, the extent of strain relaxation depends on the length of the fin. Fig. 10 shows the measured and projected hole mobility for SiGe FINFETs with 25% and 50% Ge mole fraction. Higher strain induced reduction of effective mass compensates for the increased interface charge density, Dit, in SSGOI0.5 pFINFET and alloy disorder and results in 157% increase in the hole mobility observed at Ns=1×1013 cm−2 and T=300K. Fig. 11 benchmarks the hole mobility in SSGOI0.25 and SSGOI0.5 pFINFETs as a function of electrical oxide thickness (TOXE) and shows its advantage over relaxed Ge channel MOSFETs. However strain relaxation for shorter length fins need to be addressed using careful layout techniques. High mobility combined with excellent short channel behavior make these devices a promising candidate for future technology node.
单向应变SiGe finfet的空穴迁移率增强:分析与展望
单轴应变(110)<110> Si0.75Ge0.25 pfinfet的空穴迁移率实验和理论研究表明,合金散射对300K时的整体迁移率贡献很小,但对77K时空穴迁移率的限制作用更大。当Ge含量增加到50%时,应变水平提高。然而,应变松弛的程度取决于翅片的长度。图10显示了25%和50% Ge摩尔分数的SiGe finfet的测量和预测的空穴迁移率。高应变诱导的有效质量降低补偿了SSGOI0.5 pFINFET中界面电荷密度Dit的增加和合金无序性,导致在Ns=1×1013 cm−2和T=300K时观察到的空穴迁移率增加了157%。图11基准测试了SSGOI0.25和SSGOI0.5 pfinfet的空穴迁移率作为电氧化物厚度(TOXE)的函数,并显示了其优于宽松Ge沟道mosfet的优势。然而,对于较短长度的翅片,需要使用仔细的布局技术来解决应变松弛问题。高迁移率和优良的短信道性能使这些器件成为未来技术节点的有希望的候选器件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信