STRATEGI PEMASARAN PRODUK INDUSTRI KREATIF MENGGUNAKAN ALGORITMA K-MEANS CLUSTERING BERBASIS PARTICLE SWARM OPTIMIZATION

Shanti Maulani, Oding Herdiana, Eryan Ahmad Firdaus
{"title":"STRATEGI PEMASARAN PRODUK INDUSTRI KREATIF MENGGUNAKAN ALGORITMA K-MEANS CLUSTERING BERBASIS PARTICLE SWARM OPTIMIZATION","authors":"Shanti Maulani, Oding Herdiana, Eryan Ahmad Firdaus","doi":"10.25134/nuansa.v15i2.4394","DOIUrl":null,"url":null,"abstract":"The existence of abundant UMKM data sources can be used to dig up information. Classification is one of the techniques to explore hidden data owned by data mining. Data mining classification methods, one of which is the Support Vector Machine (SVM) algorithm. The SVM algorithm has proven better results than the KKN, Decision Tree and Linear Regression algorithms. In the classification process, the accuracy and time efficiency results obtained are very important. So optimization is needed in order to increase accuracy and time efficiency during the classification process. The optimization of the SVM algorithm was carried out using the K-Means algorithm for the clustering and continuous process on UMKM data and the feature selection process using Particle Swarm Optimization (PSO). This paper aims to optimize the accuracy of the data in the form of type of business, business and turnover. From the results of the discussion of the SVM method using K-Means and PSO, it gives an average accuracy of 55% but 0.12% lower than SVM just using PSO. Keywords: UMKM, Clustering, K-Means, SVM, PSO","PeriodicalId":214195,"journal":{"name":"NUANSA INFORMATIKA","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NUANSA INFORMATIKA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25134/nuansa.v15i2.4394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The existence of abundant UMKM data sources can be used to dig up information. Classification is one of the techniques to explore hidden data owned by data mining. Data mining classification methods, one of which is the Support Vector Machine (SVM) algorithm. The SVM algorithm has proven better results than the KKN, Decision Tree and Linear Regression algorithms. In the classification process, the accuracy and time efficiency results obtained are very important. So optimization is needed in order to increase accuracy and time efficiency during the classification process. The optimization of the SVM algorithm was carried out using the K-Means algorithm for the clustering and continuous process on UMKM data and the feature selection process using Particle Swarm Optimization (PSO). This paper aims to optimize the accuracy of the data in the form of type of business, business and turnover. From the results of the discussion of the SVM method using K-Means and PSO, it gives an average accuracy of 55% but 0.12% lower than SVM just using PSO. Keywords: UMKM, Clustering, K-Means, SVM, PSO
丰富的UMKM数据源的存在可以用来挖掘信息。分类是挖掘数据挖掘中隐藏数据的技术之一。数据挖掘分类方法,其中一种是支持向量机(SVM)算法。与KKN、决策树和线性回归算法相比,支持向量机算法取得了更好的效果。在分类过程中,获得的结果的准确性和时效性是非常重要的。因此,在分类过程中需要进行优化,以提高准确率和时间效率。SVM算法的优化采用K-Means算法对UMKM数据进行聚类和连续处理,特征选择采用粒子群算法(PSO)。本文旨在优化业务类型、业务量、营业额等数据的准确性。从使用K-Means和PSO的SVM方法的讨论结果来看,它的平均准确率为55%,但比只使用PSO的SVM低0.12%。关键词:UMKM,聚类,K-Means,支持向量机,粒子群算法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信