Towards Pareto-optimal parameter synthesis for monotonie cost functions

Benjamin Bittner, M. Bozzano, A. Cimatti, M. Gario, A. Griggio
{"title":"Towards Pareto-optimal parameter synthesis for monotonie cost functions","authors":"Benjamin Bittner, M. Bozzano, A. Cimatti, M. Gario, A. Griggio","doi":"10.1109/FMCAD.2014.6987591","DOIUrl":null,"url":null,"abstract":"Designers are often required to explore alternative solutions, trading off along different dimensions (e.g., power consumption, weight, cost, reliability, response time). Such exploration can be encoded as a problem of parameter synthesis, i.e., finding a parameter valuation (representing a design solution) such that the corresponding system satisfies a desired property. In this paper, we tackle the problem of parameter synthesis with multi-dimensional cost functions by finding solutions that are in the Pareto front: in the space of best trade-offs possible. We propose several algorithms, based on IC3, that interleave in various ways the search for parameter valuations that satisfy the property, and the optimization with respect to costs. The most effective one relies on the reuse of inductive invariants and on the extraction of unsatisfiable cores to accelerate convergence. Our experimental evaluation shows the feasibility of the approach on practical benchmarks from diagnosability synthesis and product-line engineering, and demonstrates the importance of a tight integration between model checking and cost optimization.","PeriodicalId":363683,"journal":{"name":"2014 Formal Methods in Computer-Aided Design (FMCAD)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Formal Methods in Computer-Aided Design (FMCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FMCAD.2014.6987591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Designers are often required to explore alternative solutions, trading off along different dimensions (e.g., power consumption, weight, cost, reliability, response time). Such exploration can be encoded as a problem of parameter synthesis, i.e., finding a parameter valuation (representing a design solution) such that the corresponding system satisfies a desired property. In this paper, we tackle the problem of parameter synthesis with multi-dimensional cost functions by finding solutions that are in the Pareto front: in the space of best trade-offs possible. We propose several algorithms, based on IC3, that interleave in various ways the search for parameter valuations that satisfy the property, and the optimization with respect to costs. The most effective one relies on the reuse of inductive invariants and on the extraction of unsatisfiable cores to accelerate convergence. Our experimental evaluation shows the feasibility of the approach on practical benchmarks from diagnosability synthesis and product-line engineering, and demonstrates the importance of a tight integration between model checking and cost optimization.
单调代价函数的帕累托最优参数合成
设计师经常需要探索替代解决方案,在不同的维度(例如,功耗、重量、成本、可靠性、响应时间)上进行权衡。这种探索可以被编码为一个参数综合问题,即,找到一个参数估值(代表一个设计解决方案),使相应的系统满足期望的属性。在本文中,我们通过寻找帕累托前沿的解决方案来解决多维成本函数的参数综合问题:在可能的最佳权衡空间中。我们提出了几种基于IC3的算法,以各种方式交错搜索满足属性的参数估值,以及关于成本的优化。最有效的方法是通过重用归纳不变量和提取不满意的核来加速收敛。我们的实验评估表明了该方法在可诊断性综合和产品线工程的实际基准上的可行性,并证明了模型检查和成本优化之间紧密集成的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信