A. Ayala, H. Osman, Daniel Shapiro, J. Desmarais, J. Parri, M. Bolic, V. Groza
{"title":"Accelerating N-queens problem using OpenMP","authors":"A. Ayala, H. Osman, Daniel Shapiro, J. Desmarais, J. Parri, M. Bolic, V. Groza","doi":"10.1109/SACI.2011.5873061","DOIUrl":null,"url":null,"abstract":"Backtracking algorithms are used to methodically and exhaustively search a solution space for an optimal solution to a given problem. A classic example of a backtracking algorithm is illustrated by finding all solutions to the problem of placing N-queens on an N × N chess board such that no two queens attack each other. This paper demonstrates a methodology for rewriting this backtracking algorithm to take advantage of multi-core computing resources. We accelerated a sequential version of the N-queens problem on ×86 and PPC64 architectures. Using problem sizes between 13 and 17, we observed an average speedup of 3.24 for ×86 and 9.24 for the PPC64.","PeriodicalId":334381,"journal":{"name":"2011 6th IEEE International Symposium on Applied Computational Intelligence and Informatics (SACI)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 6th IEEE International Symposium on Applied Computational Intelligence and Informatics (SACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SACI.2011.5873061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Backtracking algorithms are used to methodically and exhaustively search a solution space for an optimal solution to a given problem. A classic example of a backtracking algorithm is illustrated by finding all solutions to the problem of placing N-queens on an N × N chess board such that no two queens attack each other. This paper demonstrates a methodology for rewriting this backtracking algorithm to take advantage of multi-core computing resources. We accelerated a sequential version of the N-queens problem on ×86 and PPC64 architectures. Using problem sizes between 13 and 17, we observed an average speedup of 3.24 for ×86 and 9.24 for the PPC64.