Towards Combining Motion Optimization and Data Driven Dynamical Models for Human Motion Prediction

Philipp Kratzer, Marc Toussaint, Jim Mainprice
{"title":"Towards Combining Motion Optimization and Data Driven Dynamical Models for Human Motion Prediction","authors":"Philipp Kratzer, Marc Toussaint, Jim Mainprice","doi":"10.1109/HUMANOIDS.2018.8624991","DOIUrl":null,"url":null,"abstract":"Predicting human motion in unstructured and dynamic environments is challenging. Human behavior arises from complex sensory-motor couplings processes that can change drastically depending on environments or tasks. In order to alleviate this issue, we propose to encode the lower level aspects of human motion separately from the higher level geometrical aspects using data driven dynamical models. In order to perform longer term behavior predictions that account for variation in tasks and environments, we propose to make use of gradient based constraint motion optimization. The present method is the first to our knowledge to combine motion optimization and data driven dynamical models for human motion prediction. We present results on synthetic and motion capture data of upper body reaching movements (see Figure 1) that demonstrate the efficacy of the approach with respect to simple baselines often mentioned in prior work.","PeriodicalId":433345,"journal":{"name":"2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HUMANOIDS.2018.8624991","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Predicting human motion in unstructured and dynamic environments is challenging. Human behavior arises from complex sensory-motor couplings processes that can change drastically depending on environments or tasks. In order to alleviate this issue, we propose to encode the lower level aspects of human motion separately from the higher level geometrical aspects using data driven dynamical models. In order to perform longer term behavior predictions that account for variation in tasks and environments, we propose to make use of gradient based constraint motion optimization. The present method is the first to our knowledge to combine motion optimization and data driven dynamical models for human motion prediction. We present results on synthetic and motion capture data of upper body reaching movements (see Figure 1) that demonstrate the efficacy of the approach with respect to simple baselines often mentioned in prior work.
运动优化与数据驱动动力学模型相结合的人体运动预测研究
预测人类在非结构化和动态环境中的运动是具有挑战性的。人类行为源于复杂的感觉-运动耦合过程,该过程可根据环境或任务而发生巨大变化。为了缓解这一问题,我们建议使用数据驱动的动力学模型将人体运动的较低层次方面与较高层次的几何方面分开编码。为了执行考虑任务和环境变化的长期行为预测,我们建议使用基于梯度的约束运动优化。该方法是我们所知的第一个将运动优化和数据驱动的动力学模型结合起来进行人体运动预测的方法。我们展示了上半身到达运动的合成和动作捕捉数据的结果(见图1),证明了该方法相对于先前工作中经常提到的简单基线的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信