{"title":"Development of Seabed Walking Mechanism for Underwater Amphibious Robot","authors":"Taesik Kim, Seokyong Song, Son-cheol Yu","doi":"10.1109/UR49135.2020.9144940","DOIUrl":null,"url":null,"abstract":"In this paper, we proposed an underwater walking mechanism for the underwater amphibious robot that uses one degree of freedom (DOF) actuators. For this walking mechanism, we developed a unique spring-hinge type paddle that enables the amphibious robot to walk on the seabed. We proposed a simplified 2-D model of the robot. Then, we analyzed rough-terrain capability of this mechanism by using following terms: the paddle-length, the hinge-length, the distance to the obstacle, and the maximum sweep angle. We developed an experimental robot for a feasibility test of the effectiveness of proposed walking mechanism, and we performed ground and water tank experiments with this robot. As a result, we confirmed that the robot walked stably with the proposed mechanism.","PeriodicalId":360208,"journal":{"name":"2020 17th International Conference on Ubiquitous Robots (UR)","volume":"28 8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 17th International Conference on Ubiquitous Robots (UR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UR49135.2020.9144940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
In this paper, we proposed an underwater walking mechanism for the underwater amphibious robot that uses one degree of freedom (DOF) actuators. For this walking mechanism, we developed a unique spring-hinge type paddle that enables the amphibious robot to walk on the seabed. We proposed a simplified 2-D model of the robot. Then, we analyzed rough-terrain capability of this mechanism by using following terms: the paddle-length, the hinge-length, the distance to the obstacle, and the maximum sweep angle. We developed an experimental robot for a feasibility test of the effectiveness of proposed walking mechanism, and we performed ground and water tank experiments with this robot. As a result, we confirmed that the robot walked stably with the proposed mechanism.