Quantile and Expectile Smoothing based on L1-norm and L2-norm F-transforms

Maria Letizia Guerra, Luciano Stefanini, Laerte Sorini
{"title":"Quantile and Expectile Smoothing based on L1-norm and L2-norm F-transforms","authors":"Maria Letizia Guerra, Luciano Stefanini, Laerte Sorini","doi":"10.2139/ssrn.3298023","DOIUrl":null,"url":null,"abstract":"The fuzzy transform (F-transform), introduced by I. Perfilieva, is a powerful tool for the construction of fuzzy approximation models; it is based on generalized fuzzy partitions and it is obtained by minimizing a quadratic (L₂-norm) functional. In this paper we describe an analogous construction by minimizing an L₁-norm functional, so obtaining the L₁-norm F-transform, which is again a general approximation tool.<br><br>The L₁-norm and L₂-norm settings are then used to construct two types of fuzzy-valued of F-transforms, by defining expectile (L₂-norm) and quantile (L₁-norm) extensions of the transforms. This allows to model an observed time series in terms of fuzzy-valued functions, whose level-cuts can be interpreted in the setting of expectile and quantile regression. The proposed methodology is illustrated on some financial daily time series.","PeriodicalId":400873,"journal":{"name":"Microeconomics: Information","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microeconomics: Information","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3298023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The fuzzy transform (F-transform), introduced by I. Perfilieva, is a powerful tool for the construction of fuzzy approximation models; it is based on generalized fuzzy partitions and it is obtained by minimizing a quadratic (L₂-norm) functional. In this paper we describe an analogous construction by minimizing an L₁-norm functional, so obtaining the L₁-norm F-transform, which is again a general approximation tool.

The L₁-norm and L₂-norm settings are then used to construct two types of fuzzy-valued of F-transforms, by defining expectile (L₂-norm) and quantile (L₁-norm) extensions of the transforms. This allows to model an observed time series in terms of fuzzy-valued functions, whose level-cuts can be interpreted in the setting of expectile and quantile regression. The proposed methodology is illustrated on some financial daily time series.
基于l1 -范数和l2 -范数f变换的分位数和点平滑
由I. Perfilieva引入的模糊变换(f变换)是构建模糊逼近模型的有力工具;它基于广义模糊划分,通过最小化二次(L₂范数)泛函得到。在本文中,我们描述了一个类似的构造,通过最小化一个L₁范数泛函,从而得到L₁范数f变换,这也是一个一般的近似工具。然后,通过定义变换的期望(L₂-范数)和分位数(L₁-范数)扩展,使用L₁-范数和L₂-范数设置来构造两种类型的f变换的模糊值。这允许在模糊值函数方面对观察到的时间序列进行建模,其水平切割可以在期望和分位数回归的设置中解释。所提出的方法在一些金融日时间序列上得到了说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信