Maria Letizia Guerra, Luciano Stefanini, Laerte Sorini
{"title":"Quantile and Expectile Smoothing based on L1-norm and L2-norm F-transforms","authors":"Maria Letizia Guerra, Luciano Stefanini, Laerte Sorini","doi":"10.2139/ssrn.3298023","DOIUrl":null,"url":null,"abstract":"The fuzzy transform (F-transform), introduced by I. Perfilieva, is a powerful tool for the construction of fuzzy approximation models; it is based on generalized fuzzy partitions and it is obtained by minimizing a quadratic (L₂-norm) functional. In this paper we describe an analogous construction by minimizing an L₁-norm functional, so obtaining the L₁-norm F-transform, which is again a general approximation tool.<br><br>The L₁-norm and L₂-norm settings are then used to construct two types of fuzzy-valued of F-transforms, by defining expectile (L₂-norm) and quantile (L₁-norm) extensions of the transforms. This allows to model an observed time series in terms of fuzzy-valued functions, whose level-cuts can be interpreted in the setting of expectile and quantile regression. The proposed methodology is illustrated on some financial daily time series.","PeriodicalId":400873,"journal":{"name":"Microeconomics: Information","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microeconomics: Information","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3298023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
The fuzzy transform (F-transform), introduced by I. Perfilieva, is a powerful tool for the construction of fuzzy approximation models; it is based on generalized fuzzy partitions and it is obtained by minimizing a quadratic (L₂-norm) functional. In this paper we describe an analogous construction by minimizing an L₁-norm functional, so obtaining the L₁-norm F-transform, which is again a general approximation tool.
The L₁-norm and L₂-norm settings are then used to construct two types of fuzzy-valued of F-transforms, by defining expectile (L₂-norm) and quantile (L₁-norm) extensions of the transforms. This allows to model an observed time series in terms of fuzzy-valued functions, whose level-cuts can be interpreted in the setting of expectile and quantile regression. The proposed methodology is illustrated on some financial daily time series.