Monte Carlo volume rendering

B. Csébfalvi, László Szirmay-Kalos
{"title":"Monte Carlo volume rendering","authors":"B. Csébfalvi, László Szirmay-Kalos","doi":"10.1109/VIS.2003.10000","DOIUrl":null,"url":null,"abstract":"In this paper a novel volume-rendering technique based on Monte Carlo integration is presented. As a result of a preprocessing, a point cloud of random samples is generated using a normalized continuous reconstruction of the volume as a probability density function. This point cloud is projected onto the image plane, and to each pixel an intensity value is assigned which is proportional to the number of samples projected onto the corresponding pixel area. In such a way a simulated X-ray image of the volume can be obtained. Theoretically, for a fixed image resolution, there exists an M number of samples such that the average standard deviation of the estimated pixel intensities us under the level of quantization error regardless of the number of voxels. Therefore Monte Carlo Volume Rendering (MCVR) is mainly proposed to efficiently visualize large volume data sets. Furthermore, network applications are also supported, since the trade-off between image quality and interactivity can be adapted to the bandwidth of the client/server connection by using progressive refinement.","PeriodicalId":372131,"journal":{"name":"IEEE Visualization, 2003. VIS 2003.","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"52","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Visualization, 2003. VIS 2003.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VIS.2003.10000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 52

Abstract

In this paper a novel volume-rendering technique based on Monte Carlo integration is presented. As a result of a preprocessing, a point cloud of random samples is generated using a normalized continuous reconstruction of the volume as a probability density function. This point cloud is projected onto the image plane, and to each pixel an intensity value is assigned which is proportional to the number of samples projected onto the corresponding pixel area. In such a way a simulated X-ray image of the volume can be obtained. Theoretically, for a fixed image resolution, there exists an M number of samples such that the average standard deviation of the estimated pixel intensities us under the level of quantization error regardless of the number of voxels. Therefore Monte Carlo Volume Rendering (MCVR) is mainly proposed to efficiently visualize large volume data sets. Furthermore, network applications are also supported, since the trade-off between image quality and interactivity can be adapted to the bandwidth of the client/server connection by using progressive refinement.
蒙特卡罗体绘制
本文提出了一种新的基于蒙特卡罗积分的体绘制技术。作为预处理的结果,使用归一化连续重构的体积作为概率密度函数生成随机样本的点云。将该点云投影到图像平面上,并为每个像素分配一个强度值,该强度值与投影到相应像素区域的样本数量成正比。这样就可以得到该体积的模拟x射线图像。理论上,对于固定的图像分辨率,存在M个样本,使得在量化误差水平下估计的像素强度的平均标准偏差与体素数无关。因此,蒙特卡罗体绘制(MCVR)主要用于大体积数据集的高效可视化。此外,还支持网络应用程序,因为通过使用渐进式细化,可以根据客户机/服务器连接的带宽调整图像质量和交互性之间的权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信