Combined Symmetry of Exponential and Extreme Hyperbolic Distributions in Macrosystems

M. Delas
{"title":"Combined Symmetry of Exponential and Extreme Hyperbolic Distributions in Macrosystems","authors":"M. Delas","doi":"10.1109/MSNMC.2018.8576264","DOIUrl":null,"url":null,"abstract":"An extended entropy method has been developed that accounts for the finite properties of distributions and the stagewise character of relaxation processes. The kinetic properties of system agents (carriers and resources) determine the distribution type. If the time of relaxation of carriers is shorter, the exponential distribution is formed, whereas if the dynamic resources are more agile, an extreme heavy-tail hyperbolic distribution is formed. The exponential and extreme hyperbolic distributions have been found to possess combined symmetry, which is a different statistical interpretation of a single state.","PeriodicalId":404334,"journal":{"name":"2018 IEEE 5th International Conference on Methods and Systems of Navigation and Motion Control (MSNMC)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 5th International Conference on Methods and Systems of Navigation and Motion Control (MSNMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MSNMC.2018.8576264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An extended entropy method has been developed that accounts for the finite properties of distributions and the stagewise character of relaxation processes. The kinetic properties of system agents (carriers and resources) determine the distribution type. If the time of relaxation of carriers is shorter, the exponential distribution is formed, whereas if the dynamic resources are more agile, an extreme heavy-tail hyperbolic distribution is formed. The exponential and extreme hyperbolic distributions have been found to possess combined symmetry, which is a different statistical interpretation of a single state.
宏观系统中指数分布与极值双曲分布的联合对称性
提出了一种扩展熵法,该方法考虑了分布的有限性质和松弛过程的阶段特征。系统代理(载体和资源)的动力学特性决定了分布类型。载流子松弛时间较短时,形成指数分布;动态资源较灵活时,形成极端重尾双曲线分布。指数分布和极端双曲分布具有组合对称性,这是对单一状态的不同统计解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信