Industrial process monitoring by multi-channel acoustic signal analysis

S. Astapov, A. Riid, J. Preden, Tanel Aruvali
{"title":"Industrial process monitoring by multi-channel acoustic signal analysis","authors":"S. Astapov, A. Riid, J. Preden, Tanel Aruvali","doi":"10.1109/BEC.2014.7320593","DOIUrl":null,"url":null,"abstract":"Machinery monitoring at the shop floor bears relevance in preventive maintenance applications and for manufacturing process optimization. As the installation of monitoring hardware directly on the machinery may be hazardous and expensive due to installation costs, the use of contactless sensors is preferable. In this paper we propose a solution for machinery monitoring based on multi-channel acoustic information analysis. We apply large aperture microphone arrays, perform machine noise source localization using the SRP-PHAT method and classify machine acoustical patterns by means of fuzzy rule-based classification. The results of experiments, performed in an industrial setting, indicate the feasibility of our solution in real conditions.","PeriodicalId":348260,"journal":{"name":"2014 14th Biennial Baltic Electronic Conference (BEC)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 14th Biennial Baltic Electronic Conference (BEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BEC.2014.7320593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Machinery monitoring at the shop floor bears relevance in preventive maintenance applications and for manufacturing process optimization. As the installation of monitoring hardware directly on the machinery may be hazardous and expensive due to installation costs, the use of contactless sensors is preferable. In this paper we propose a solution for machinery monitoring based on multi-channel acoustic information analysis. We apply large aperture microphone arrays, perform machine noise source localization using the SRP-PHAT method and classify machine acoustical patterns by means of fuzzy rule-based classification. The results of experiments, performed in an industrial setting, indicate the feasibility of our solution in real conditions.
基于多通道声信号分析的工业过程监测
车间的机械监控与预防性维护应用和制造过程优化相关。由于直接在机器上安装监控硬件可能是危险和昂贵的,由于安装成本,使用非接触式传感器是可取的。本文提出了一种基于多通道声信息分析的机械监测解决方案。我们采用大孔径麦克风阵列,使用SRP-PHAT方法进行机器噪声源定位,并采用基于模糊规则的分类方法对机器声学模式进行分类。在工业环境中进行的实验结果表明,我们的解决方案在实际条件下是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信