Information-theoretic limits of algorithmic noise tolerance

Daewon Seo, L. Varshney
{"title":"Information-theoretic limits of algorithmic noise tolerance","authors":"Daewon Seo, L. Varshney","doi":"10.1109/ICRC.2016.7738715","DOIUrl":null,"url":null,"abstract":"Statistical error compensation techniques in computing circuits are becoming prevalent, especially as implemented on nanoscale physical substrates. One such technique that has been developed and deployed is algorithmic noise tolerance (ANT), which aggregates information from several computational branches operating at different points along energy-reliability circuit tradeoffs. To understand this practical approach better, it is of interest to develop limit theorems on optimal designs, no matter how much design effort is put in. The purpose of this paper is to develop a fundamental limit for ANT by making an analogy to the CEO problem in multiterminal source coding, extended to the setting with a mixed set of discrete and continuous random variables. Since statistical signal processing and machine learning are key workloads for modern computing, we specifically discuss performance measured according to logarithmic distortion, in addition to mean-squared error. We find the Gaussian CEO problem provides performance bounds for ANT under both kinds of distortion.","PeriodicalId":387008,"journal":{"name":"2016 IEEE International Conference on Rebooting Computing (ICRC)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Rebooting Computing (ICRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRC.2016.7738715","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Statistical error compensation techniques in computing circuits are becoming prevalent, especially as implemented on nanoscale physical substrates. One such technique that has been developed and deployed is algorithmic noise tolerance (ANT), which aggregates information from several computational branches operating at different points along energy-reliability circuit tradeoffs. To understand this practical approach better, it is of interest to develop limit theorems on optimal designs, no matter how much design effort is put in. The purpose of this paper is to develop a fundamental limit for ANT by making an analogy to the CEO problem in multiterminal source coding, extended to the setting with a mixed set of discrete and continuous random variables. Since statistical signal processing and machine learning are key workloads for modern computing, we specifically discuss performance measured according to logarithmic distortion, in addition to mean-squared error. We find the Gaussian CEO problem provides performance bounds for ANT under both kinds of distortion.
算法噪声容忍度的信息理论限制
统计误差补偿技术在计算电路中变得越来越普遍,特别是在纳米级物理衬底上实现。其中一种已经开发和部署的技术是算法噪声容限(ANT),它从沿着能量可靠性电路权衡的不同点运行的几个计算分支中收集信息。为了更好地理解这种实用的方法,开发最优设计的极限定理是有意义的,无论投入多少设计努力。本文的目的是通过类比多终端源编码中的CEO问题,将其扩展到具有离散和连续随机变量的混合集的设置,从而开发ANT的基本极限。由于统计信号处理和机器学习是现代计算的关键工作负载,除了均方误差之外,我们还专门讨论了根据对数失真测量的性能。我们发现在这两种失真情况下,高斯CEO问题为ANT提供了性能边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信