{"title":"An 80-W 94.6%-Efficient Multi-Phase Multi-Inductor Hybrid Converter","authors":"R. Das, Gab-Su Seo, D. Maksimović, Hanh-Phuc Le","doi":"10.1109/APEC.2019.8721952","DOIUrl":null,"url":null,"abstract":"This paper presents a new Multi-Phase Multi-Inductor Hybrid (MP-MIH) converter that features high efficiency at large conversion ratios, while operating the switches with duty cycles larger than state-of-the-art hybrid topologies. In this converter, the capacitors are soft-charged and soft-discharged through three inductors operated in three interleaving phases. An experimental six-level three-phase converter prototype achieves 94.6% peak efficiency and 425 W/in3 power density for conversions from 48V to 1V-2V at loads of up to 40A. This multi-phase multi-inductor hybrid converter architecture can be extended to any number of switched-capacitor network levels to support wide range of input and output voltages and load currents in data centers, telecommunication and other high-performance digital systems.","PeriodicalId":142409,"journal":{"name":"2019 IEEE Applied Power Electronics Conference and Exposition (APEC)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Applied Power Electronics Conference and Exposition (APEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APEC.2019.8721952","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22
Abstract
This paper presents a new Multi-Phase Multi-Inductor Hybrid (MP-MIH) converter that features high efficiency at large conversion ratios, while operating the switches with duty cycles larger than state-of-the-art hybrid topologies. In this converter, the capacitors are soft-charged and soft-discharged through three inductors operated in three interleaving phases. An experimental six-level three-phase converter prototype achieves 94.6% peak efficiency and 425 W/in3 power density for conversions from 48V to 1V-2V at loads of up to 40A. This multi-phase multi-inductor hybrid converter architecture can be extended to any number of switched-capacitor network levels to support wide range of input and output voltages and load currents in data centers, telecommunication and other high-performance digital systems.