Data-Driven Test Generation for Black-Box Systems From Learned Decision Tree Models

Swantje Plambeck, Goerschwin Fey
{"title":"Data-Driven Test Generation for Black-Box Systems From Learned Decision Tree Models","authors":"Swantje Plambeck, Goerschwin Fey","doi":"10.1109/DDECS57882.2023.10139633","DOIUrl":null,"url":null,"abstract":"Testing of black-box systems is a difficult task, because no prior knowledge on the system is given that can be used for design and evaluation of tests. Learning a model of a black-box system from observations enables model-based testing (MBT). We take a recent approach using decision tree learning to create a model of a black-box system and discuss the usage of such a decision tree model for test generation. In this scope, we define a test coverage metric for decision tree models. Furthermore, we identify different modes of testing and explain that a decision tree model especially facilitates model-based testing for black-box systems with limited controllability of inputs and the inability to reset the system to a specific state. A case study on a discrete system illustrates our MBT approach.","PeriodicalId":220690,"journal":{"name":"2023 26th International Symposium on Design and Diagnostics of Electronic Circuits and Systems (DDECS)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 26th International Symposium on Design and Diagnostics of Electronic Circuits and Systems (DDECS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DDECS57882.2023.10139633","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Testing of black-box systems is a difficult task, because no prior knowledge on the system is given that can be used for design and evaluation of tests. Learning a model of a black-box system from observations enables model-based testing (MBT). We take a recent approach using decision tree learning to create a model of a black-box system and discuss the usage of such a decision tree model for test generation. In this scope, we define a test coverage metric for decision tree models. Furthermore, we identify different modes of testing and explain that a decision tree model especially facilitates model-based testing for black-box systems with limited controllability of inputs and the inability to reset the system to a specific state. A case study on a discrete system illustrates our MBT approach.
基于学习决策树模型的黑箱系统数据驱动测试生成
黑盒系统的测试是一项困难的任务,因为没有关于系统的先验知识可以用于测试的设计和评估。从观察中学习黑箱系统的模型可以实现基于模型的测试(MBT)。我们采用最近的一种方法,使用决策树学习来创建一个黑盒系统的模型,并讨论了这种决策树模型在测试生成中的使用。在这个范围内,我们为决策树模型定义了一个测试覆盖率度量。此外,我们确定了不同的测试模式,并解释了决策树模型特别有助于对输入可控性有限且无法将系统重置到特定状态的黑盒系统进行基于模型的测试。一个离散系统的案例研究说明了我们的MBT方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信