Learning Tactic-Based Motion Models of a Moving Object with Particle Filtering

Yang Gu, M. Veloso
{"title":"Learning Tactic-Based Motion Models of a Moving Object with Particle Filtering","authors":"Yang Gu, M. Veloso","doi":"10.1109/CIRA.2007.382907","DOIUrl":null,"url":null,"abstract":"Learning motion models of a moving object is a challenge for autonomous robots. We address the particular instance of parameter learning when tracking object motions in a switching multi-model system. We present a general algorithm of joint parameter-state estimation based on multi-model particle filter. We apply the approach to a specific ball-tracking problem and extend the algorithm to learn model parameters in a dynamic Bayesian network (DBN). We show empirical results in simulation and in a team robot soccer environment, as a substrate for applying the learned models to object tracking in a team. The learning capability allow the tracker to much more effectively track mobile objects.","PeriodicalId":301626,"journal":{"name":"2007 International Symposium on Computational Intelligence in Robotics and Automation","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Symposium on Computational Intelligence in Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIRA.2007.382907","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Learning motion models of a moving object is a challenge for autonomous robots. We address the particular instance of parameter learning when tracking object motions in a switching multi-model system. We present a general algorithm of joint parameter-state estimation based on multi-model particle filter. We apply the approach to a specific ball-tracking problem and extend the algorithm to learn model parameters in a dynamic Bayesian network (DBN). We show empirical results in simulation and in a team robot soccer environment, as a substrate for applying the learned models to object tracking in a team. The learning capability allow the tracker to much more effectively track mobile objects.
基于策略的粒子滤波运动物体运动模型学习
学习运动物体的运动模型是自主机器人面临的一个挑战。我们解决了在切换多模型系统中跟踪对象运动时参数学习的特殊实例。提出了一种基于多模型粒子滤波的联合参数状态估计的通用算法。我们将该方法应用于一个特定的球跟踪问题,并将该算法扩展到动态贝叶斯网络(DBN)中的模型参数学习。我们在模拟和团队机器人足球环境中展示了经验结果,作为将学习模型应用于团队目标跟踪的基础。学习能力使跟踪器能够更有效地跟踪移动物体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信