Fast license plate detection based on edge density and integral edge image

P. Tarábek
{"title":"Fast license plate detection based on edge density and integral edge image","authors":"P. Tarábek","doi":"10.1109/SAMI.2012.6208994","DOIUrl":null,"url":null,"abstract":"This paper presents a robust algorithm for license plate detection that can detect multiple license plates with various sizes in unfamiliar and complex backgrounds. License plate detection is an important processing step in license plate recognition which has many applications in intelligent transportation systems. Vertical edges and edge density features are utilized to find candidate regions. Then, the candidates are filtered out based on geometrical and textural properties. The efficiency of the method is improved using the integral edge image and two-stage candidate window detection. The experimental results confirm robustness and efficiency of proposed method.","PeriodicalId":158731,"journal":{"name":"2012 IEEE 10th International Symposium on Applied Machine Intelligence and Informatics (SAMI)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 10th International Symposium on Applied Machine Intelligence and Informatics (SAMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMI.2012.6208994","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

This paper presents a robust algorithm for license plate detection that can detect multiple license plates with various sizes in unfamiliar and complex backgrounds. License plate detection is an important processing step in license plate recognition which has many applications in intelligent transportation systems. Vertical edges and edge density features are utilized to find candidate regions. Then, the candidates are filtered out based on geometrical and textural properties. The efficiency of the method is improved using the integral edge image and two-stage candidate window detection. The experimental results confirm robustness and efficiency of proposed method.
基于边缘密度和积分边缘图像的车牌快速检测
提出了一种鲁棒的车牌检测算法,可以在不熟悉的复杂背景下检测出多个不同尺寸的车牌。车牌检测是车牌识别的重要处理步骤,在智能交通系统中有着广泛的应用。利用垂直边缘和边缘密度特征寻找候选区域。然后,根据几何和纹理特性对候选图像进行过滤。采用积分边缘图像和两阶段候选窗口检测,提高了算法的效率。实验结果验证了该方法的鲁棒性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信